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Kernel K-means

Kernel K-means algorithm is also an iterative procedure:

1.  Initialization: pick K clusters (random assignment of points to a cluster, or use 

K-means at initialization)

2. Assignment Step: Assign each data point  to its “closest” centroid 

(E-step). 

3. Update Step: Update the list of points belonging to each centroid 

(M-step)

4. Go back to step 2 and repeat the process until the clusters are stable.
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Kernel K-means: Algorithm
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What is the influence of this term on the clustering (when using the RBF kernel)?

A. It gives more weight to points close to 

the cluster.

B. It gives less weight to points close to 

the cluster.

C. It has no influence.

D. I do not know.
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Interpreting the objective function

( ),  depends only on the query datapoint 

It is the same for all clusters and hence has no 

influence on cluster allocation.
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What is the influence of this term on the clustering (when using the RBF kernel)?

A. The closer the point x is to the cluster, the 

larger is this term.

B. The denser the cluster, the larger.

C. The more spread out the cluster is, the 

larger.

D. I do not know.
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Interpreting the objective function
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What is the influence of this term on the clustering (when using the RBF kernel)?

A. The closer the point x is to the cluster, the 

larger is this term.

B. The denser the cluster, the larger.

C. The more spread out the cluster is, the 

larger.

D. I do not know.
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Interpreting the objective function
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The closer the points 

are to one another in 

the same cluster, the 

larger the sum.
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Kernel K-means: Analysis of the TermsKernel K-means: interpreting the solution

Density versus number of points

1 2has same number of points than ,  but is denser.C C
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2C
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Kernel K-means: Analysis of the TermsKernel K-means: interpreting the solution

Density versus number of points

Cutoff like classical K-means.

1C

2C
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Kernel K-means: Analysis of the TermsKernel K-means: interpreting the solution

Density versus number of points

Increases effect of spread out clusters

1C

2C
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There is no difference if the additional datapoints are superimposed to the previous group.

The additional number is taken into account in the normalization.
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Kernel K-means: Analysis of the TermsKernel K-means: interpreting the solution

1C

2C

Assume that C2 has now twice more points than C1, does this affect the result?

A. Yes

B. No

C. I do not know

Terms are unchanged
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Kernel K-means: Analysis of the TermsKernel K-means: interpreting the solution

2 1What if has twice more points than ,  in the outer part.C C

1C

2C

Assume that C2 has now twice more points than C1, does this affect the result?

A. Yes

B. No

C. I do not know

In this case, this affects the result as it shifts the boundary, but this is not the result of having more 

points but of the centroid of C2 to shift to the right.

Term increasesTerm decreases
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Kernel K-means: Analysis of the TermsKernel K-means: interpreting the solution

Density versus number of points

Normalization factors  cancel effect of # points 

and give  a measure of average density / distance
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With a polynomial kernel

Norm - Positive value

A datapoint will be assigned to the closest cluster in the closest partition.

Kernel K-means: interpreting the solution

A: Affected by the 

position of the points 

from the origin (norm).

B: Affected by the 

relative angle across 

the points.
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Kernel K-means: interpreting the solution

1C

1CA: Affected by the 

position of the points 

from the origin (norm).

2C

Equidistant for p=2, 4, etc
( ) ( )( )

Homogeneous Polynomial
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Kernel K-means: interpreting the solution

K=2, p=2

( ) ( )( )
Homogeneous Polynomial

,  ,   
p

T
i j i jk x x x x p += 

1C

2C

Equidistant for p=2, 4, etc
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Kernel K-means: interpreting the solution

K=2, p=2
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Kernel K-means: interpreting the solution
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The second term 

counterbalances 

the first term

Norm larger
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Kernel K-means: interpreting the solution

B: Affected by the 

relative angle across 

the points.
1C

2C

If the centroid of the cluster 

does not change, the term 

remains comparable.
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Kernel K-means: interpreting the solution

B: Affected by the 

relative angle across 

the points.
1C

2C

The spread of the cluster affects both 

angle and distance between points 

within same cluster. Imbalance in point 

distribution may be exacerbated.
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Kernel K-means: ExampleQuadran partitioning

Draw the partition with K=2 and p=2
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Kernel K-means: ExampleQuadran partitioning

Draw the partition with K=2 and p=2
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Kernel K-means: ExampleQuadran partitioning
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Kernel K-means: ExampleQuadran partitioning

Draw the partition with K=2 and p=2

The spread of the cluster affects both 

angle and distance between points 

within same cluster. Imbalance in point 

distribution may be exacerbated.
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Kernel K-means: ExampleQuadran partitioning

Partitioning with K=4 and homogeneous polynomial with p=1.
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Will the partitioning be correct in this case too?

A. Yes

B. No

C. I do not know

Partitioning with K=4 and homogeneous polynomial with p=1.
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Kernel K-means: ExampleQuadran partitioning

P=1
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Does the boundary depend on the power of the polynomial p?

A. Yes

B. No

C. I do not know
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Kernel K-means: ExampleQuadran partitioning

P=2
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Kernel K-means: ExampleQuadran partitioning

P=3



ADVANCED MACHINE LEARNING

32

ADVANCED MACHINE LEARNING

Kernel K-means: ExampleQuadran partitioning

P=10
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Kernel K-means: ExampleQuadran partitioning

P=55
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Kernel K-means: ExampleQuadran partitioning

P=100
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Type of partitioning

Can homogeneous polynomial kernel with p=1 separate the 2 groups?

A. Yes

B. No

C. I do not know
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Kernel K-means: ExampleType of partitioning

No, it cannot as the distance between the small group is smaller 

than that between the groups.
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Type of partitioning

With higher order of p?

A. Yes

B. No

C. I do not know
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Kernel K-means: ExampleType of partitioning

Yes with very large p, here p=60
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Consider this group of points not centered, if you use K=4, homogeneous 

polynomial kernel p=1, will you get correct partitioning? 

A. Yes

B. No

C. I do not know
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Would the result change with p>1?

A. Yes

B. No

C. I do not know
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p=2 The higher ,  

the more curvy 

the boundaries.

p

p=7 p=20
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Choice of number of Clusters in Kernel K-means is important

Kernel K-means: Limitations
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Choice of number of Clusters in Kernel K-means is important

Kernel K-means: Limitations
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Choice of number of Clusters in Kernel K-means is important

Kernel K-means: Limitations
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Limitations of kernel K-means

Raw Data
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Limitations of kernel K-means

kernel K-means with K=2, RBF kernel
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