

MACHINE LEARNING

Kernel for Clustering *kernel K-Means*

Interactive lecture and exercises

Kernel K-means: Algorithm

Kernel K-means algorithm is also an iterative procedure:

- 1. Initialization:** pick K clusters (random assignment of points to a cluster, or use K-means at initialization)
- 2. Assignment Step:** Assign each data point to its “closest” centroid (E-step).

$$\arg \min_k d(x, C^k) = \min_k \left(k(x, x) - \frac{2 \sum_{x^j \in C^k} k(x, x^j)}{m_k} + \frac{\sum_{x^j, x^l \in C^k} k(x^j, x^l)}{(m_k)^2} \right)$$

- 3. Update Step:** Update the list of points belonging to each centroid (M-step)
4. Go back to step 2 and repeat the process until the clusters are stable.

Interpreting the objective function

What is the influence of this term on the clustering (when using the RBF kernel)?

$$\arg \min_k d(x, C^k) = \min_k \left(k(x, x) - \frac{2 \sum_{x^j \in C^k} k(x, x^j)}{m_k} + \frac{\sum_{x^j, x^l \in C^k} k(x^j, x^l)}{(m_k)^2} \right)$$

- A. It gives more weight to points close to the cluster.
- B. It gives less weight to points close to the cluster.
- C. It has no influence.
- D. I do not know.

$k(x, x)$ depends only on the query datapoint x
It is the same for all clusters and hence has no influence on cluster allocation.

Interpreting the objective function

What is the influence of this term on the clustering (when using the RBF kernel)?

$$\arg \min_k d(x, C^k) = \min_k \left(k(x, x) - \frac{2 \sum_{x^j \in C^k} k(x, x^j)}{m_k} + \frac{\sum_{x^j, x^l \in C^k} k(x^j, x^l)}{(m_k)^2} \right)$$

- A. The closer the point x is to the cluster, the larger is this term. ✓
- B. The denser the cluster, the larger. ✓
- C. The more spread out the cluster is, the larger.
- D. I do not know.

$$0 < k(x, x^i) = e^{-\frac{\|x-x^i\|^2}{\sigma^2}} \leq 1$$

The closer the point to the center of the cluster, the larger the kernel.

Interpreting the objective function

What is the influence of this term on the clustering (when using the RBF kernel)?

$$\arg \min_k d(x, C^k) = \min_k \left(k(x, x) - \frac{2 \sum_{x^j \in C^k} k(x, x^j)}{m_k} + \frac{\sum_{x^j, x^l \in C^k} k(x^j, x^l)}{(m_k)^2} \right)$$

- A. The closer the point x is to the cluster, the larger is this term.
- B. The denser the cluster, the larger. ✓
- C. The more spread out the cluster is, the larger.
- D. I do not know.

$$0 < \frac{\sum_{x^j, x^l \in C^k} k(x^j, x^l)}{(m_k)^2} \leq 1$$

The closer the points are to one another in the same cluster, the larger the sum.

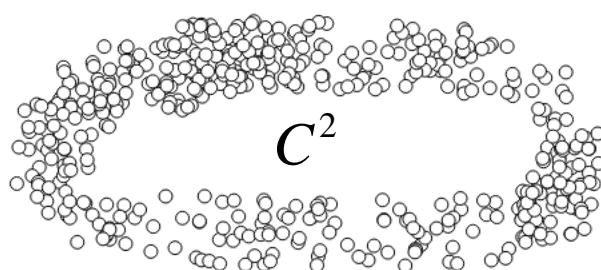
Kernel K-means: interpreting the solution

Density versus number of points

$$\arg \min_k d(x, C^k) = \min_k \left[k(x, x) - \frac{2 \sum_{x^j \in C^k} k(x, x^j)}{m_k} + \frac{\sum_{x^j, x^l \in C^k} k(x^j, x^l)}{(m_k)^2} \right]$$

C^1 has same number of points than C^2 , but is denser.

C^1

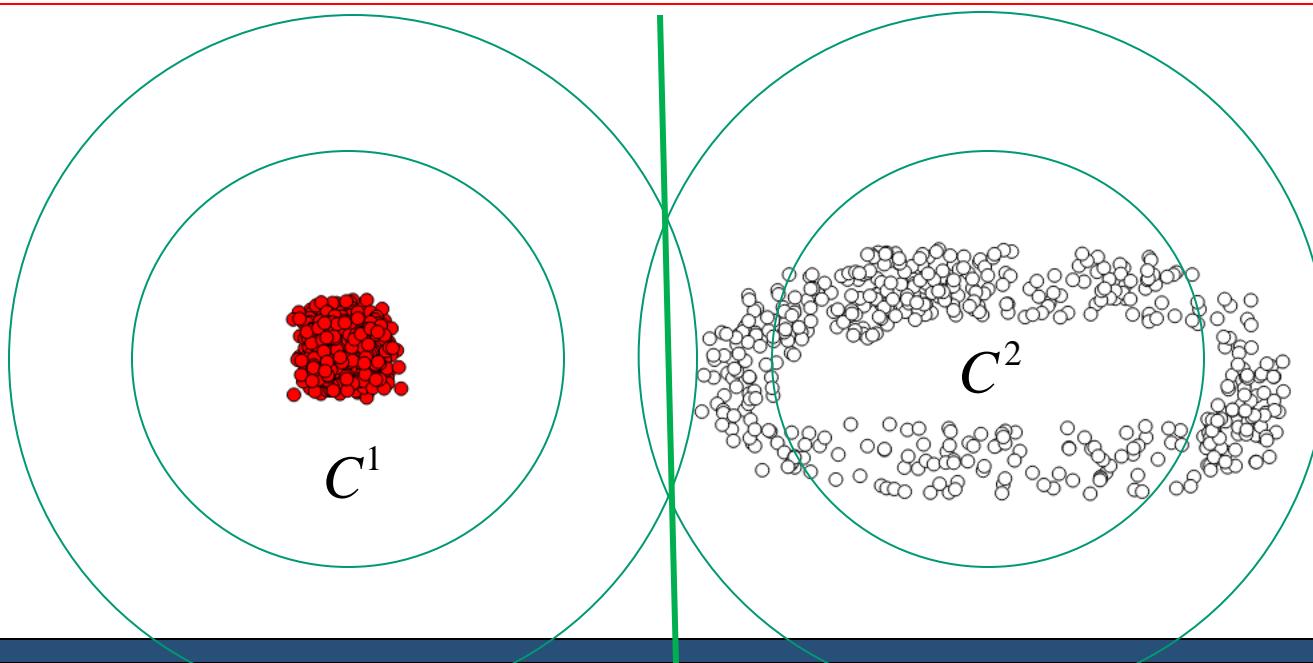


Kernel K-means: interpreting the solution

Density versus number of points

$$\arg \min_k d(x, C^k) = \min_k \left[k(x, x) - \frac{2 \sum_{x^j \in C^k} k(x, x^j)}{m_k} + \frac{\sum_{x^j, x^l \in C^k} k(x^j, x^l)}{(m_k)^2} \right]$$

Cutoff like classical K-means.

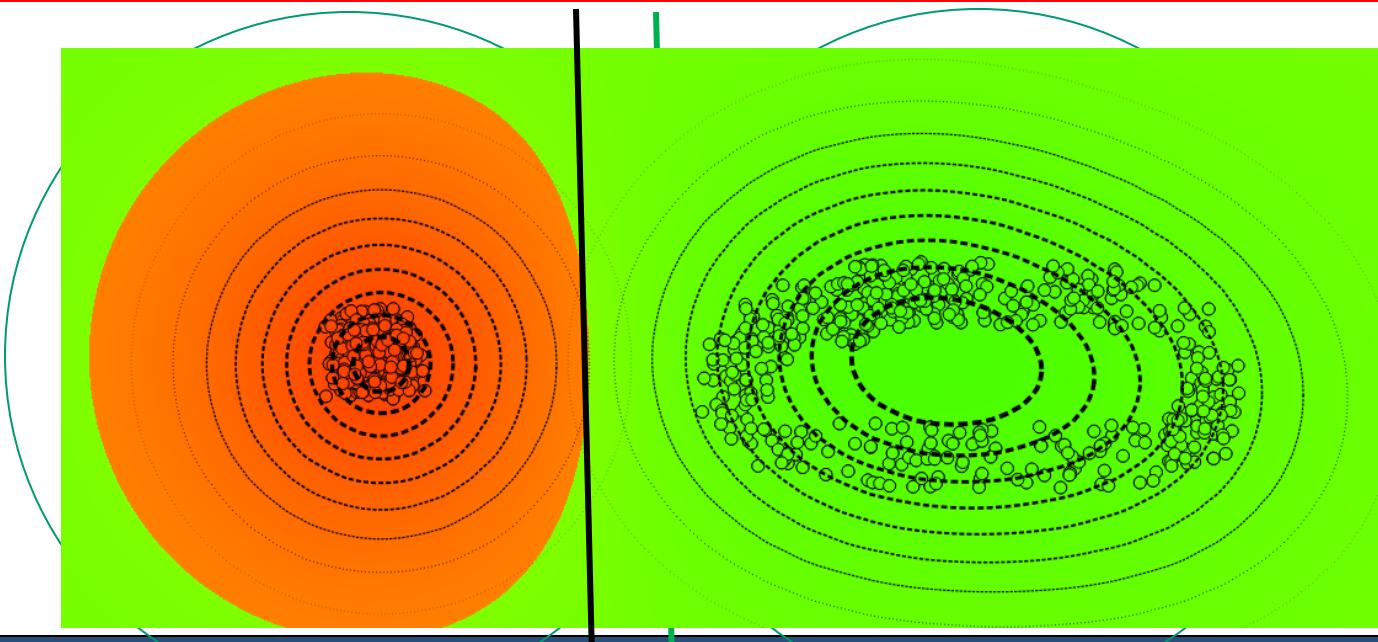


Kernel K-means: interpreting the solution

Density versus number of points

$$\arg \min_k d(x, C^k) = \min_k \left[k(x, x) - \frac{2 \sum_{x^j \in C^k} k(x, x^j)}{m_k} + \frac{\sum_{x^j, x^l \in C^k} k(x^j, x^l)}{(m_k)^2} \right]$$

Increases effect of spread out clusters



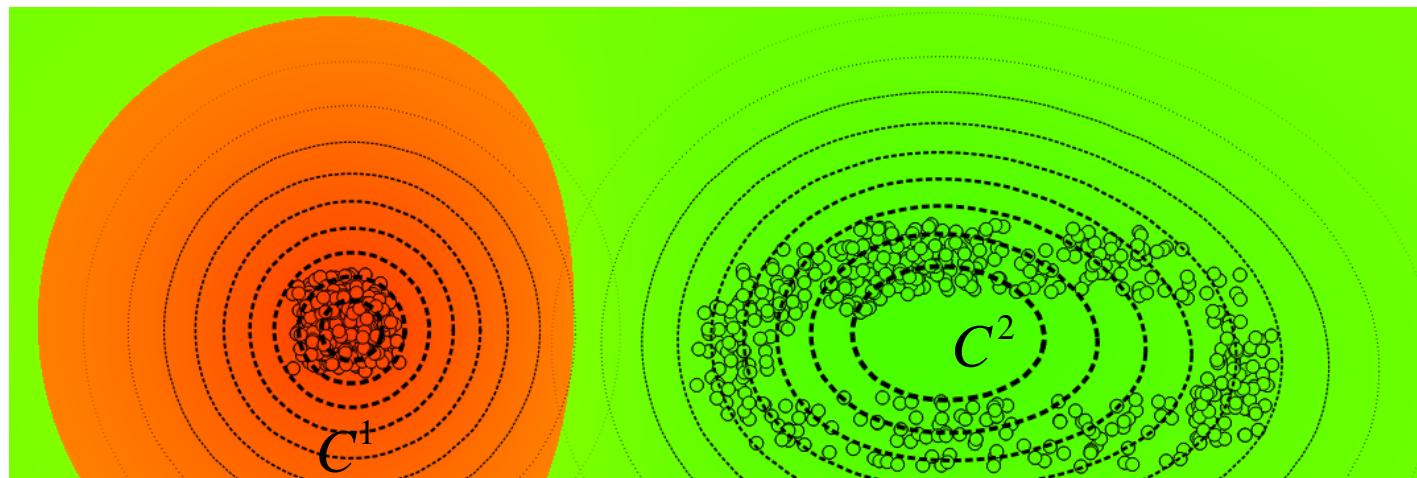
Kernel K-means: interpreting the solution

Assume that C_2 has now twice more points than C_1 , does this affect the result?

- A. Yes
- B. No
- C. I do not know

$$\arg \min_k d(x, C^k) = \min_k \left[k(x, x) - \frac{2 \sum_{x^j \in C^k} k(x, x^j)}{m_k} + \frac{\sum_{x^j, x^l \in C^k} k(x^j, x^l)}{(m_k)^2} \right]$$

Terms are unchanged



There is no difference if the additional datapoints are superimposed to the previous group.
 The additional number is taken into account in the normalization.

Kernel K-means: interpreting the solution

Assume that C_2 has now twice more points than C_1 , does this affect the result?

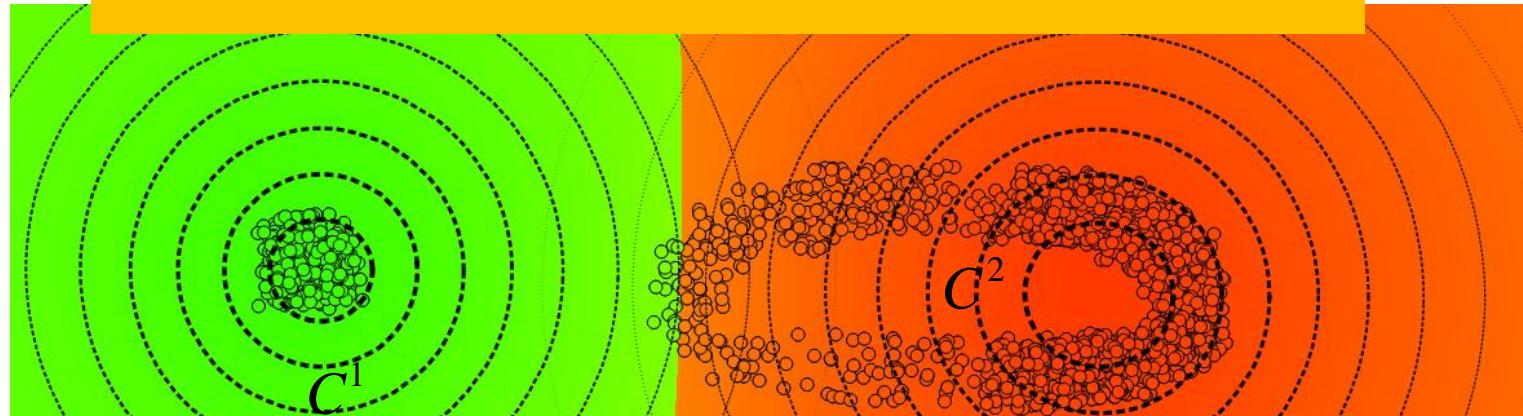
- A. Yes
- B. No
- C. I do not know

$$\arg \min_k d(x, C^k) = \min_k \left[k(x, x) - \frac{2 \sum_{x^j \in C^k} k(x, x^j)}{m_k} + \frac{\sum_{x^j, x^l \in C^k} k(x^j, x^l)}{(m_k)^2} \right]$$

Term decreases

Term increases

What if C^2 has twice more points than C^1 , in the outer part.



In this case, this affects the result as it shifts the boundary, but this is not the result of having more points but of the centroid of C_2 to shift to the right.

Kernel K-means: interpreting the solution

Density versus number of points

$$\arg \min_k d(x, C^k) = \min_k \left(k(x, x) - \frac{2 \sum_{x^j \in C^k} k(x, x^j)}{m_k} + \frac{\sum_{x^j, x^l \in C^k} k(x^j, x^l)}{(m_k)^2} \right)$$

Normalization factors cancel effect of # points
and give a measure of average density / distance

Kernel K-means: interpreting the solution

With a polynomial kernel

$$k(x^i, x^j) = ((x^i)^T x^j + c)^p, \quad c \in \mathbb{R}, p \in \mathbb{N}_+$$

Norm - Positive value

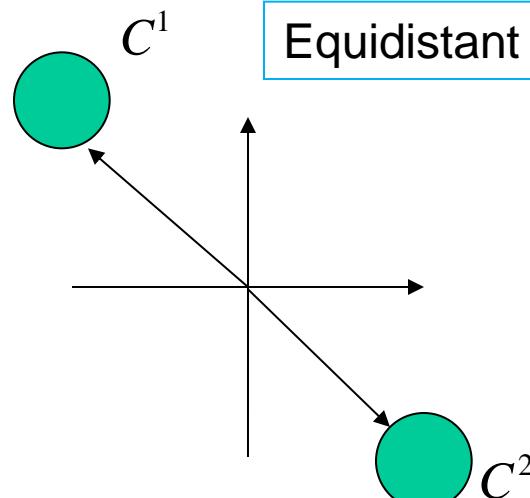
$$\arg \min_k d(x, C^k) = \min_k \left(k(x, x) - \frac{2 \sum_{x^j \in C^k} k(x, x^j)}{m_k} + \frac{\sum_{x^j, x^l \in C^k} k(x^j, x^l)}{(m_k)^2} \right)$$

A: Affected by the position of the points from the origin (norm).

B: Affected by the relative angle across the points.

A datapoint will be assigned to the closest cluster in the closest partition.

Kernel K-means: interpreting the solution



A: Affected by the position of the points from the origin (norm).

Homogeneous Polynomial

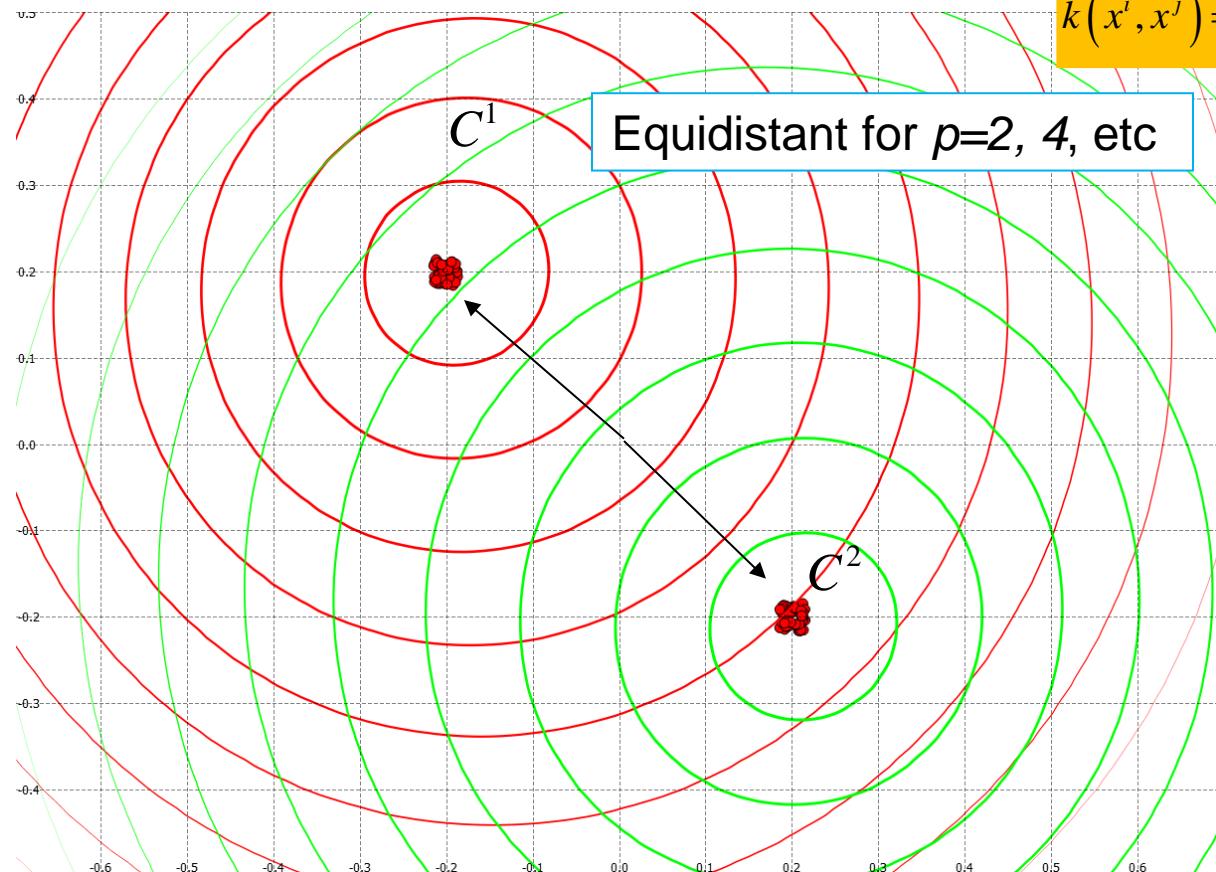
$$k(x^i, x^j) = \left((x^i)^T x^j \right)^p, \quad p \in \mathbb{N}_+$$

$$\arg \min_k d(x, C^k) = \min_k \left(k(x, x) - \frac{2 \sum_{x^j \in C^k} k(x, x^j)}{m_k} + \frac{\sum_{x^j, x^l \in C^k} k(x^j, x^l)}{(m_k)^2} \right)$$

Kernel K-means: interpreting the solution

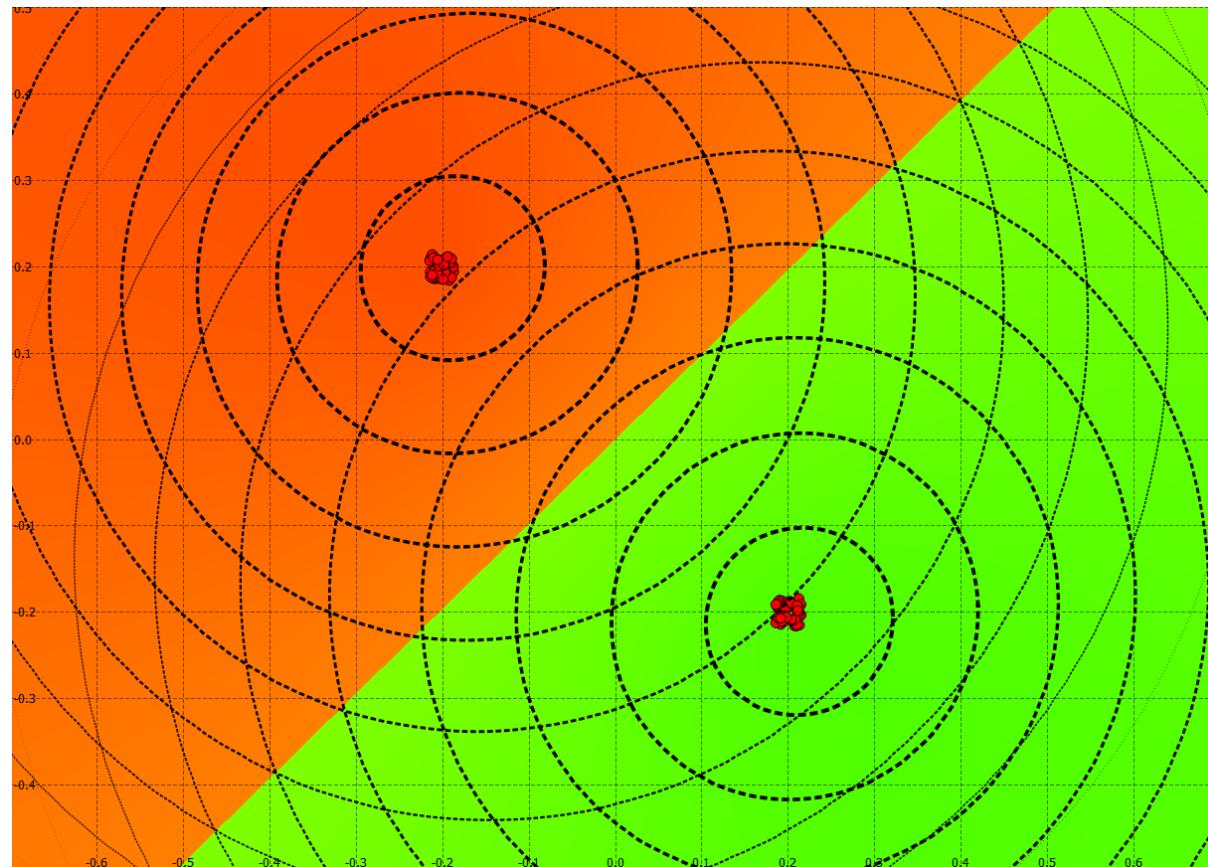
Homogeneous Polynomial

$$k(x^i, x^j) = ((x^i)^T x^j)^p, \quad p \in \mathbb{N}_+$$



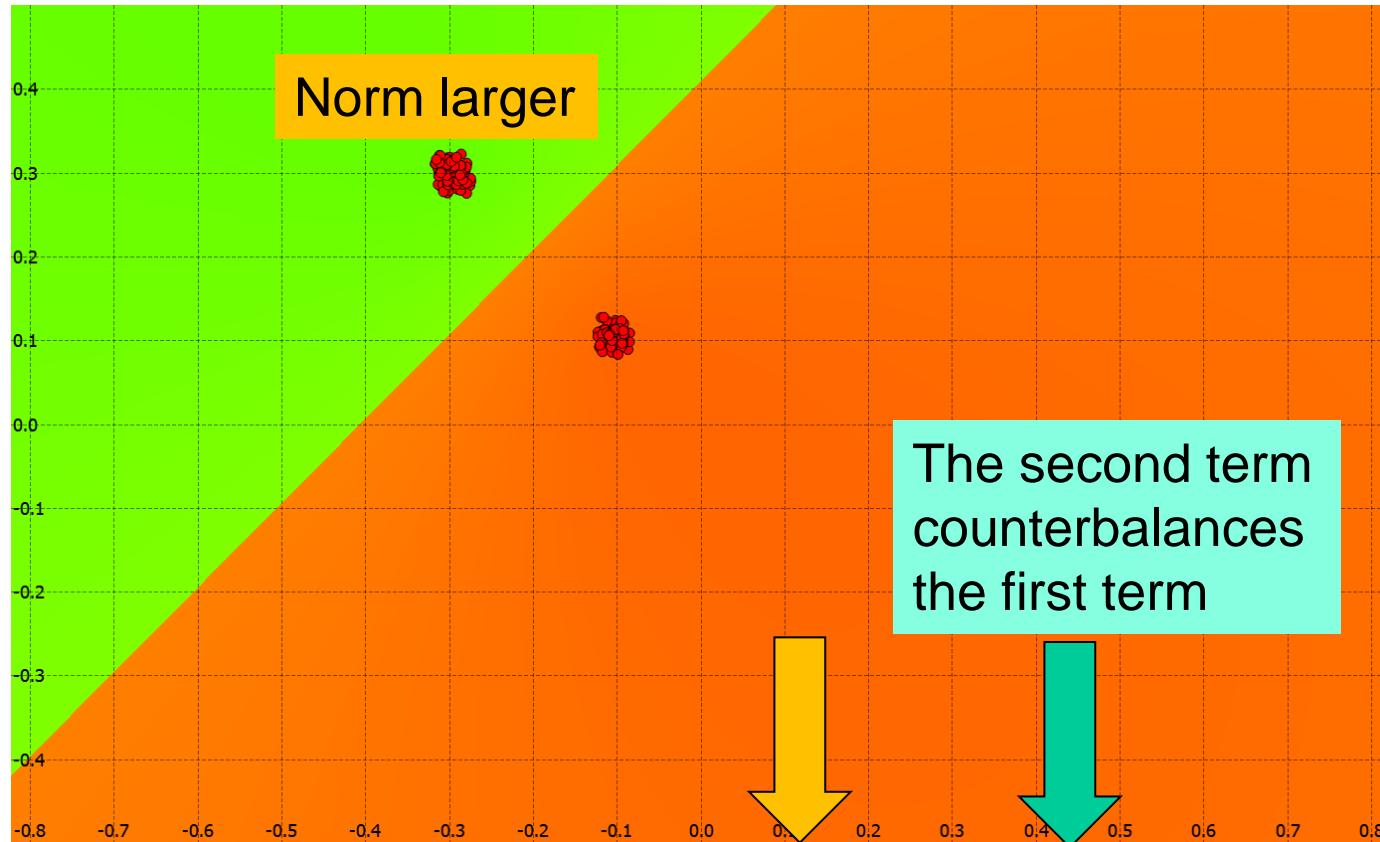
$K=2, p=2$

Kernel K-means: interpreting the solution



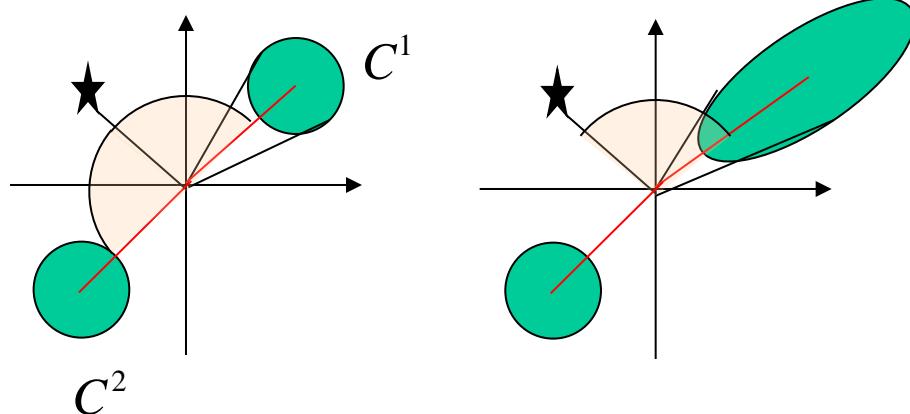
$K=2, p=2$

Kernel K-means: interpreting the solution



$$\arg \min_k d(x, C^k) = \min_k \left(k(x, x) - \frac{2 \sum_{x^j \in C^k} k(x, x^j)}{m_k} + \frac{\sum_{x^j, x^l \in C^k} k(x^j, x^l)}{(m_k)^2} \right)$$

Kernel K-means: interpreting the solution

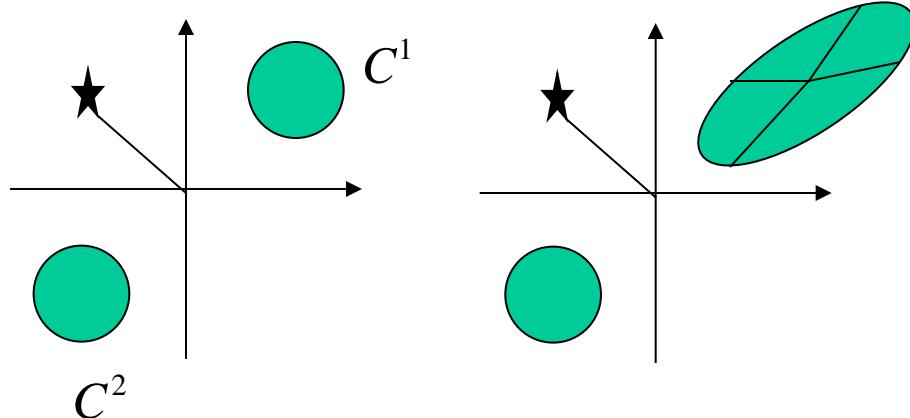


B: Affected by the relative angle across the points.

$$\arg \min_k d(x, C^k) = \min_k \left(k(x, x) - \frac{2 \sum_{x^j \in C^k} k(x, x^j)}{m_k} + \frac{\sum_{x^j, x^l \in C^k} k(x^j, x^l)}{(m_k)^2} \right)$$

If the centroid of the cluster does not change, the term remains comparable.

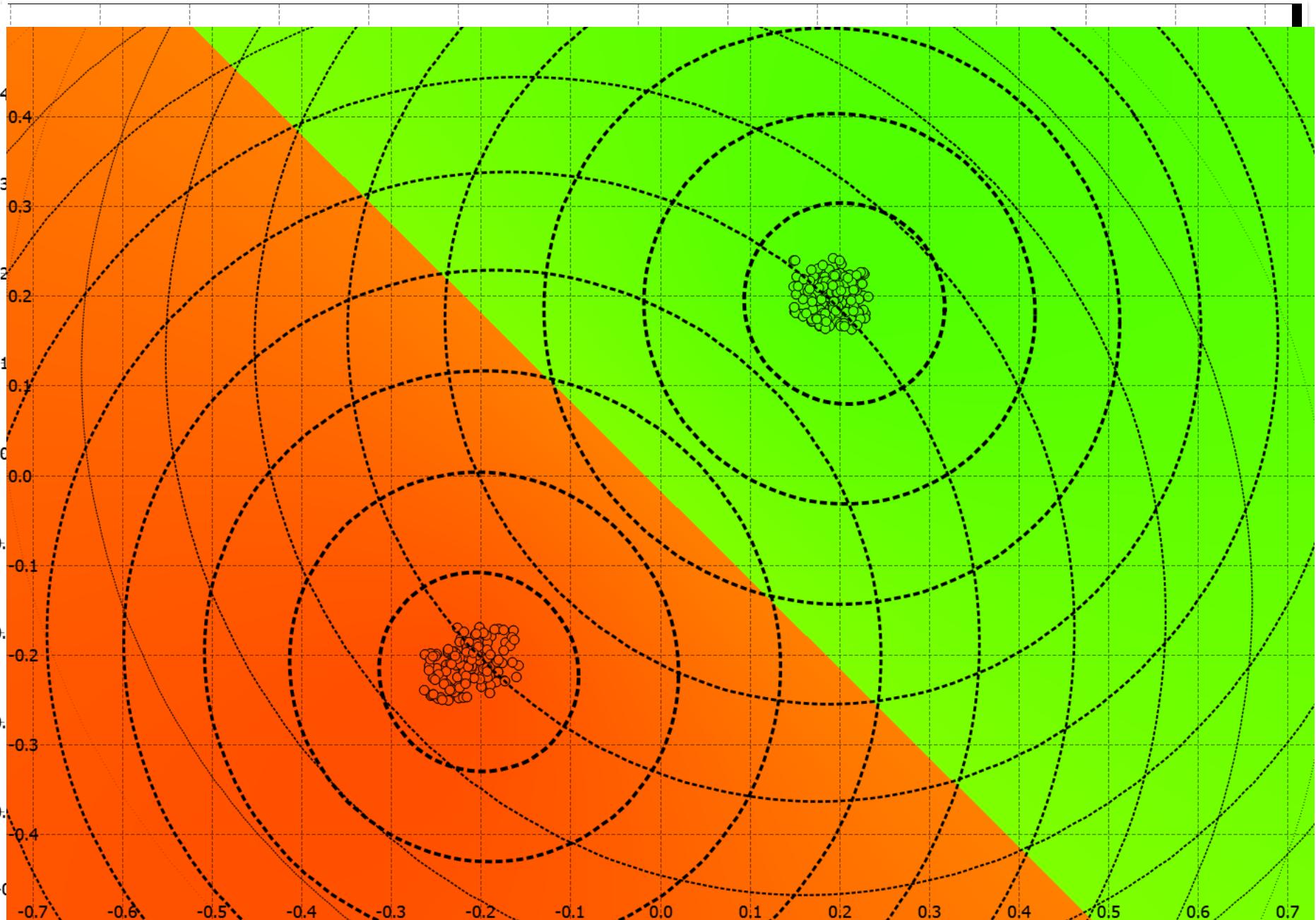
Kernel K-means: interpreting the solution

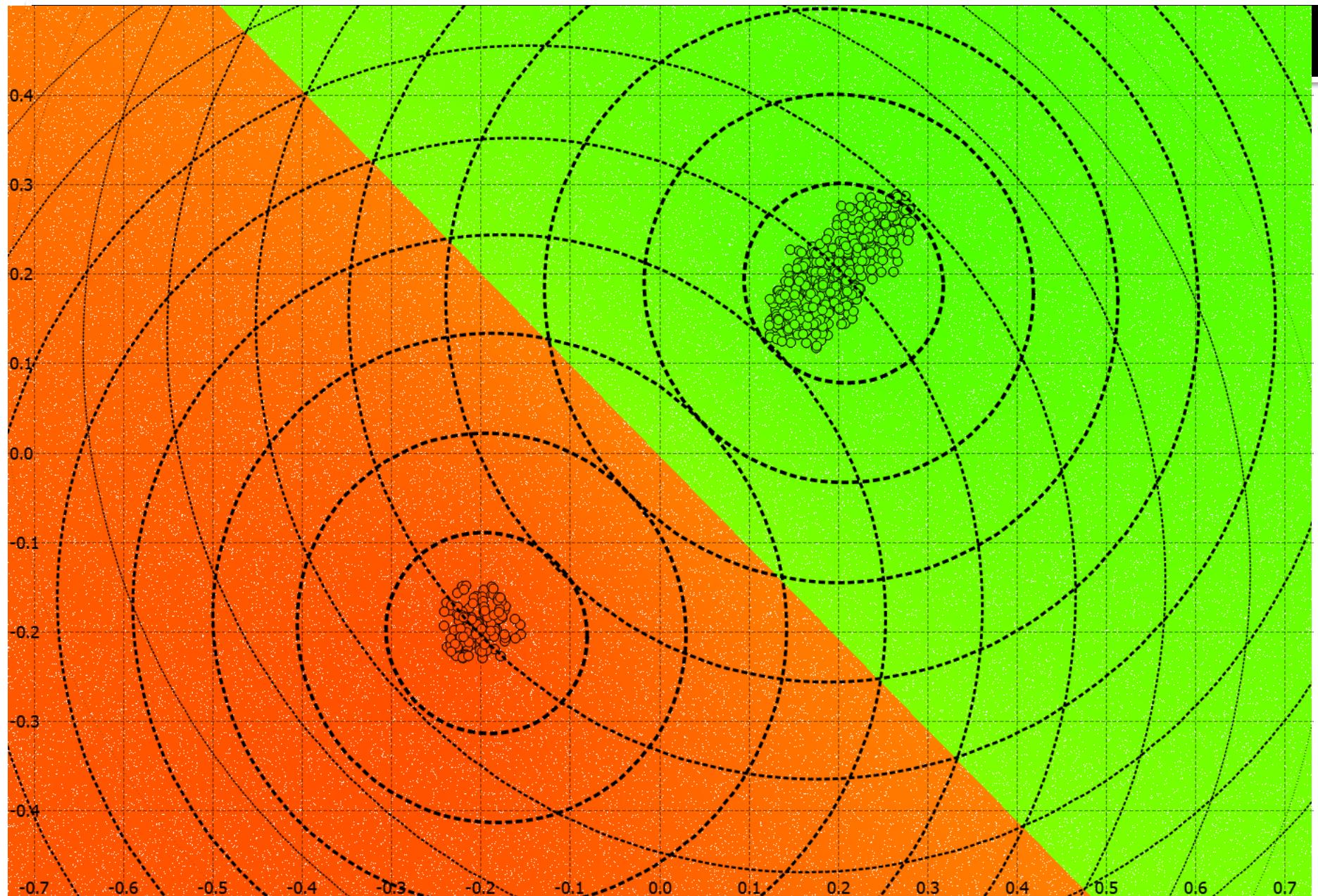


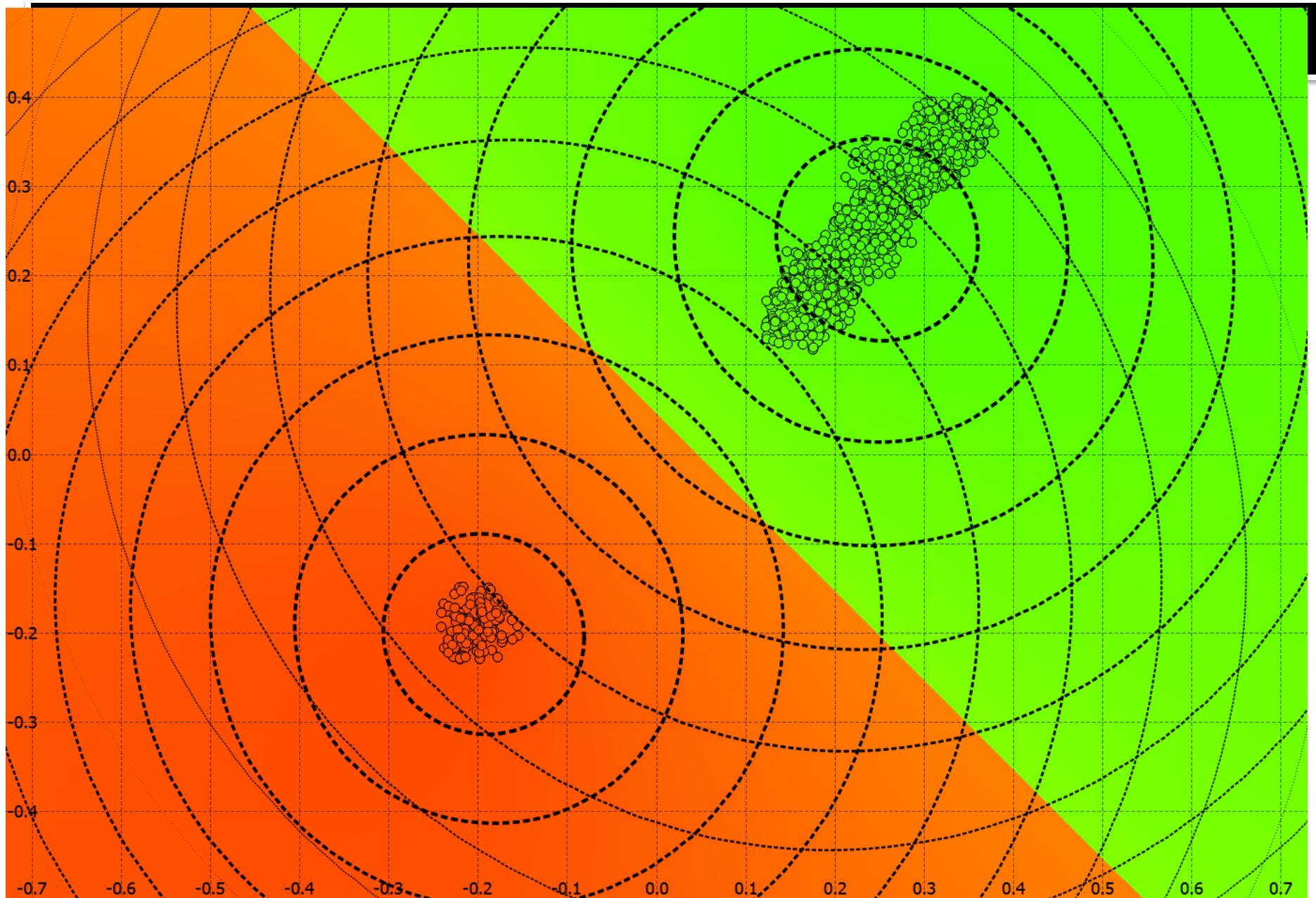
B: Affected by the relative angle across the points.

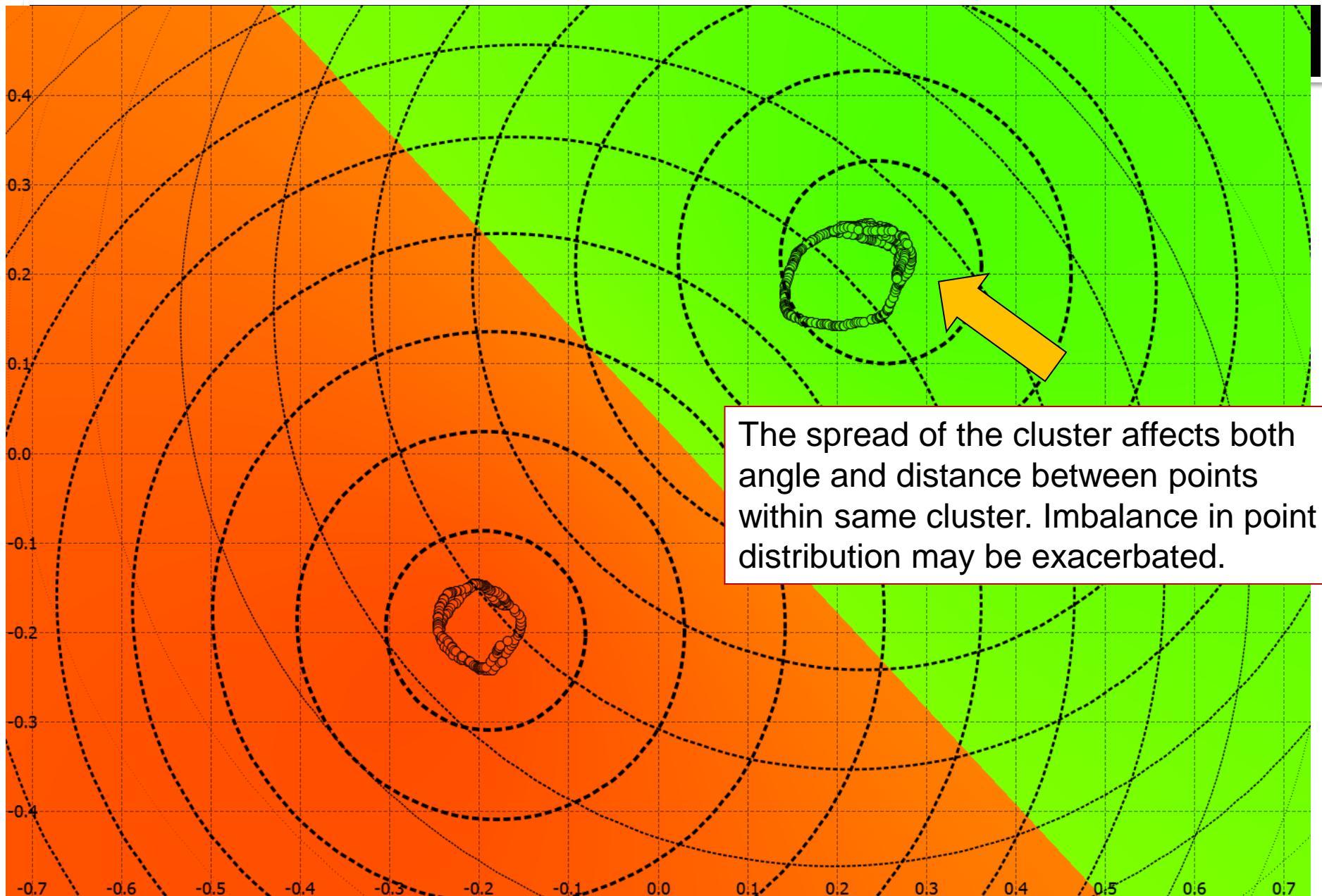
$$\arg \min_k d(x, C^k) = \min_k \left(k(x, x) - \frac{2 \sum_{x^j \in C^k} k(x, x^j)}{m_k} + \frac{\sum_{x^j, x^l \in C^k} k(x^j, x^l)}{(m_k)^2} \right)$$

The spread of the cluster affects both angle and distance between points within same cluster. Imbalance in point distribution may be exacerbated.

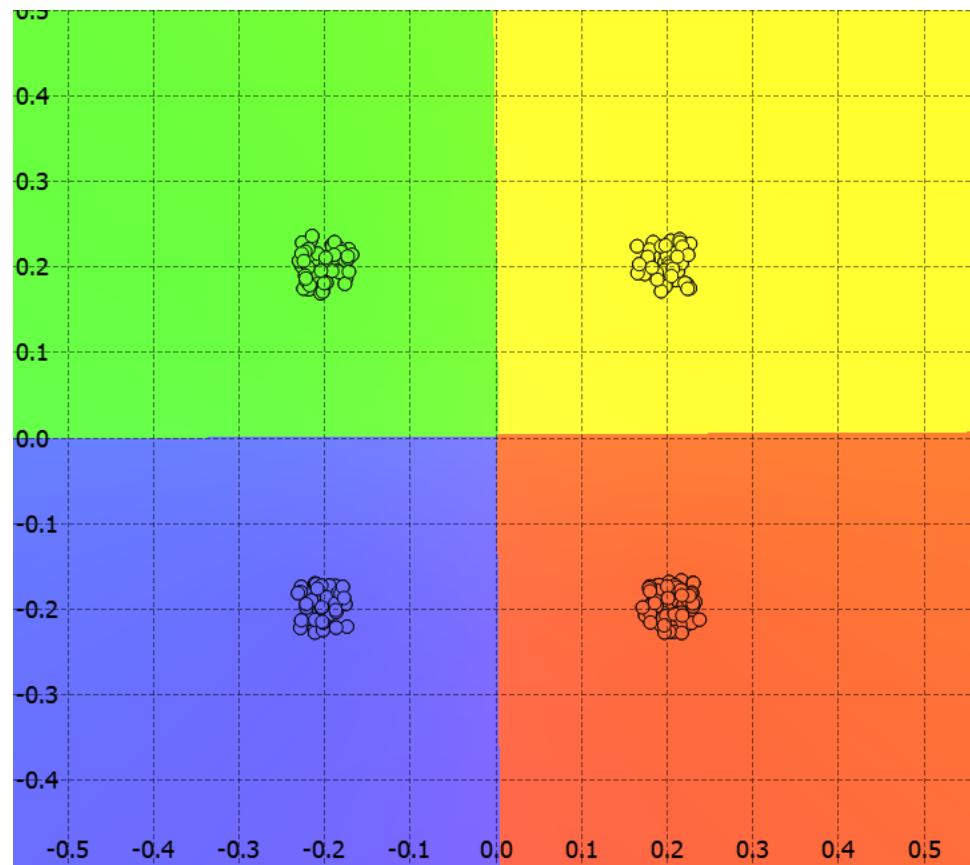






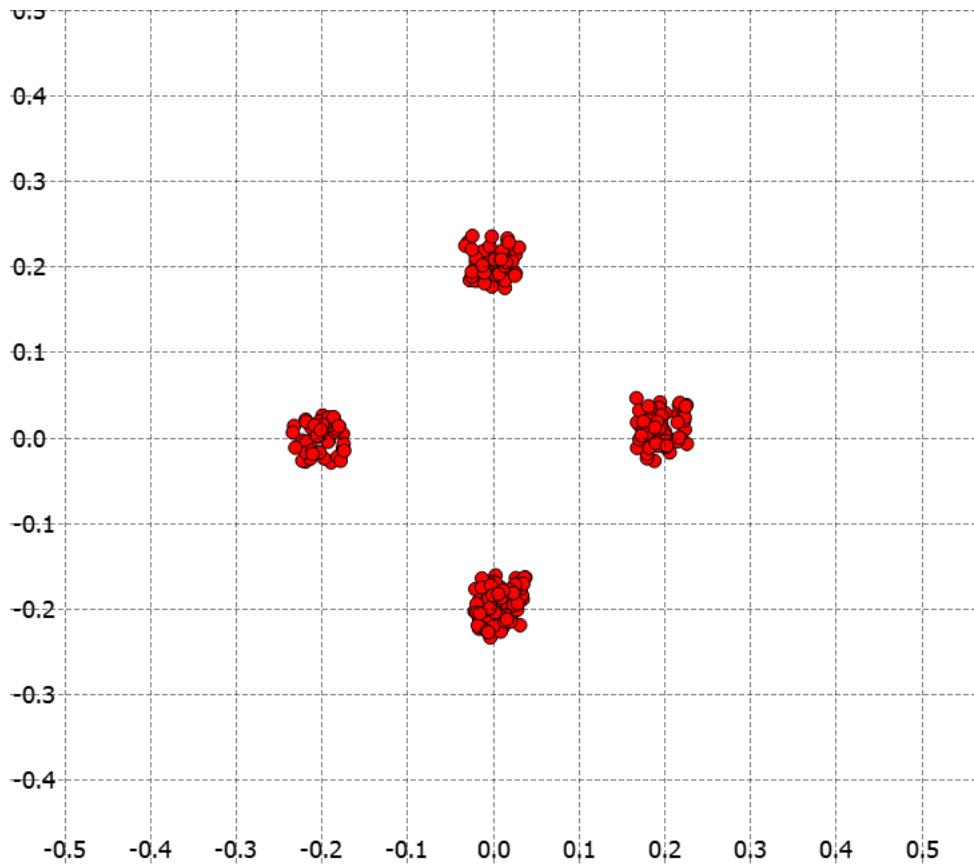


Quadran partitioning



Partitioning with $K=4$ and homogeneous polynomial with $p=1$.

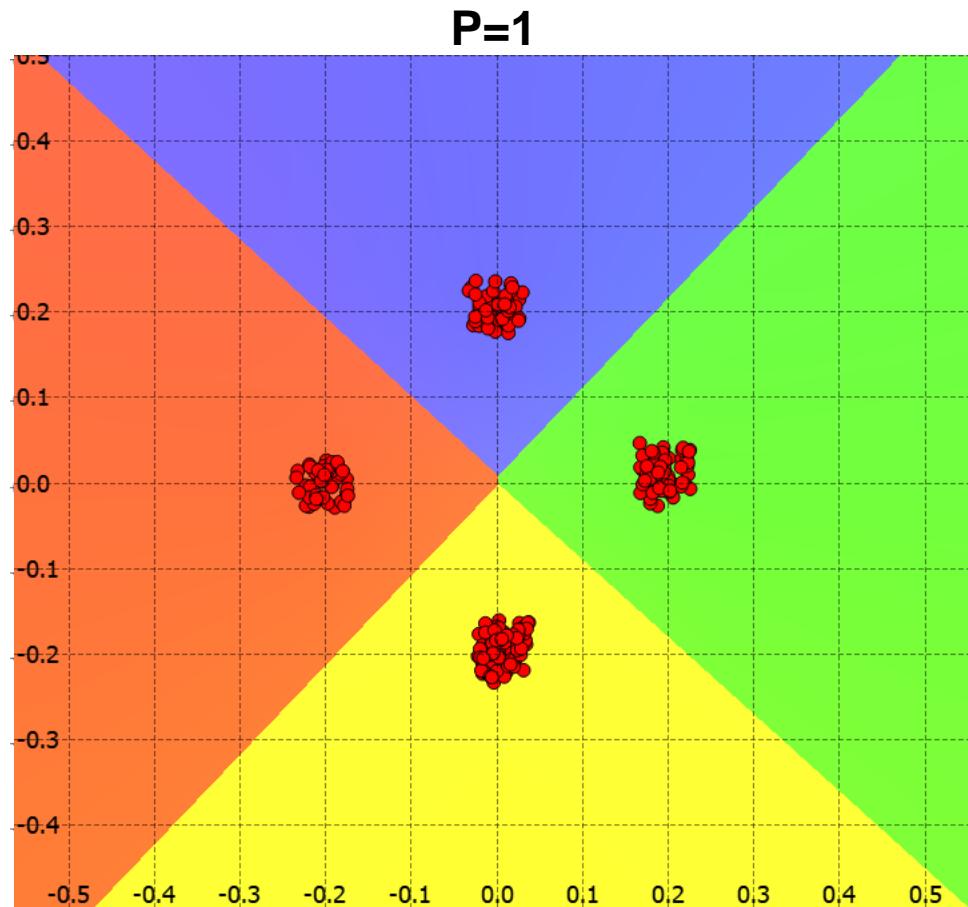
Will the partitioning be correct in this case too?



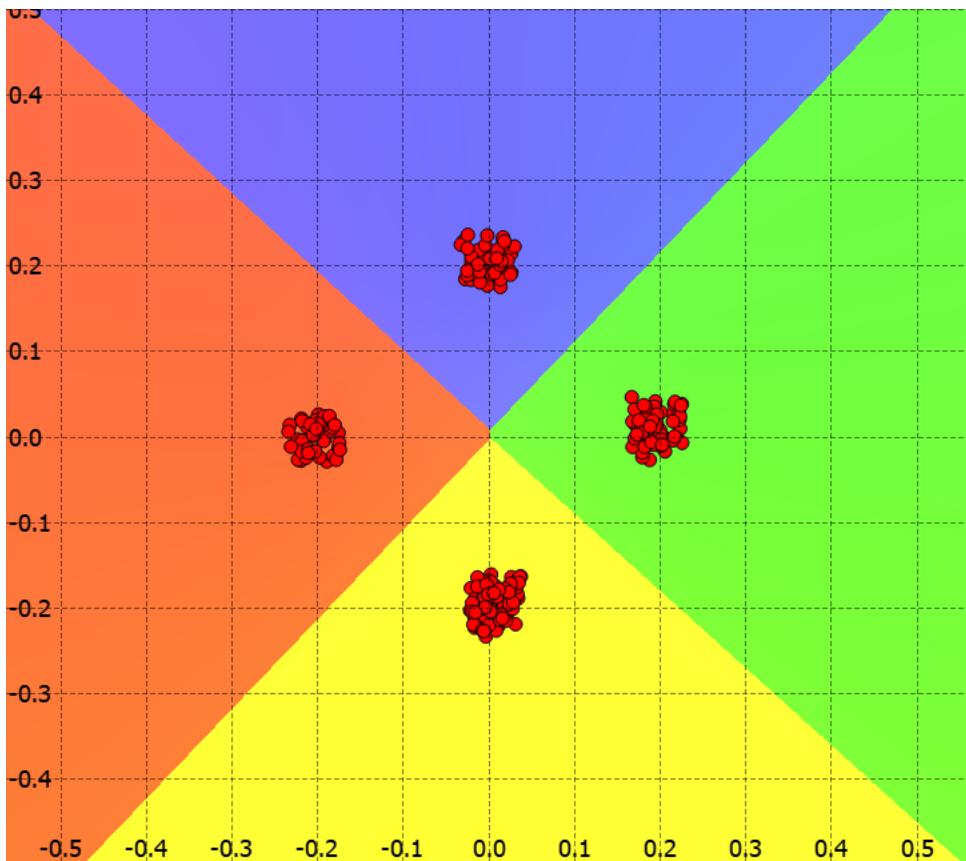
- A. Yes
- B. No
- C. I do not know

Partitioning with K=4 and homogeneous polynomial with p=1.

Quadran partitioning

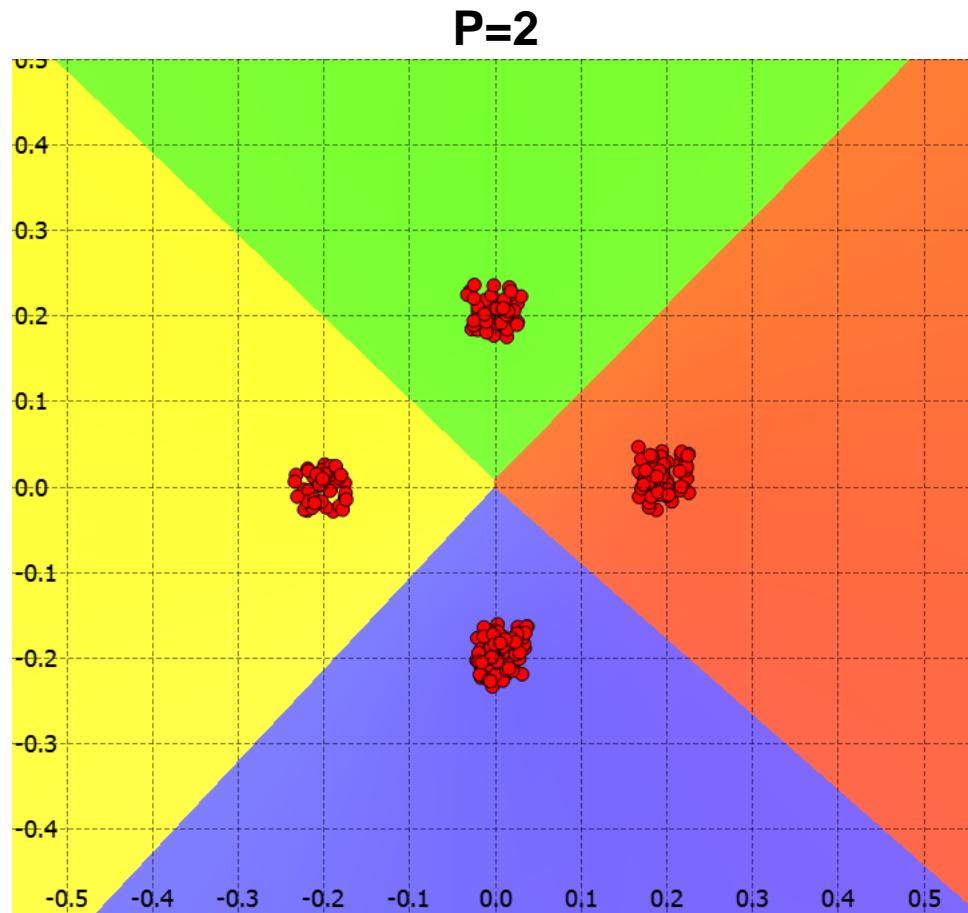


Does the boundary depend on the power of the polynomial p?

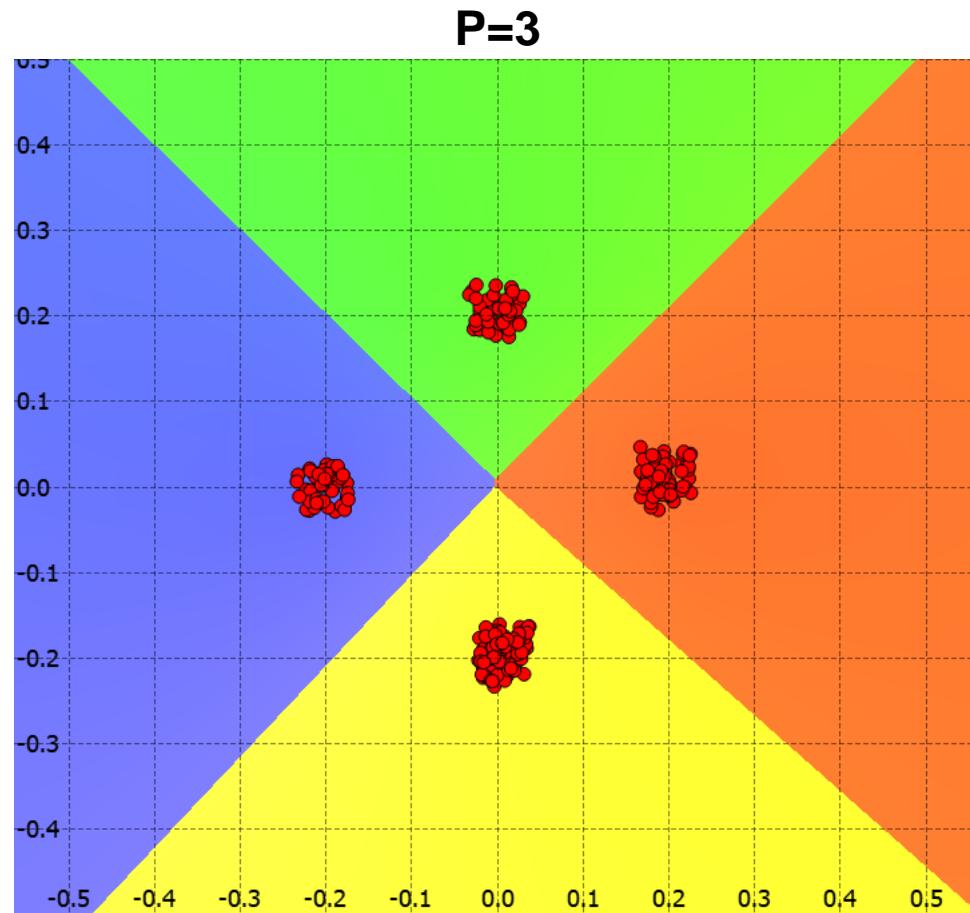


- A. Yes
- B. No
- C. I do not know

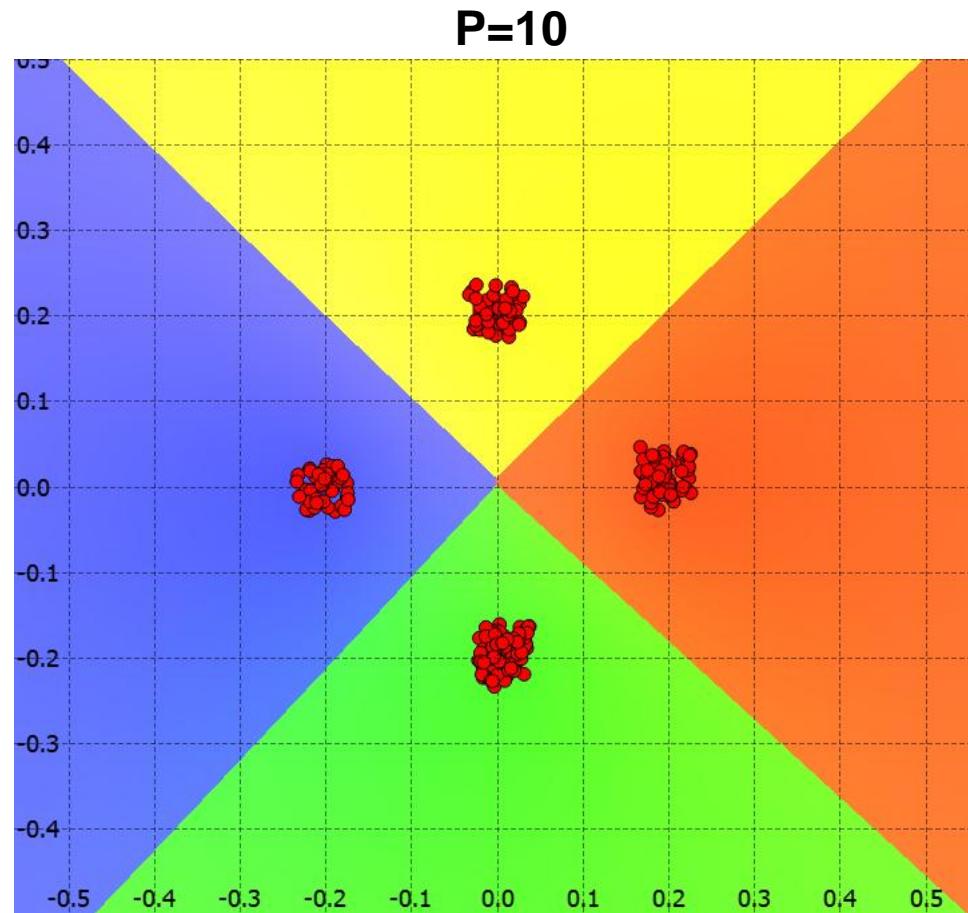
Quadran partitioning



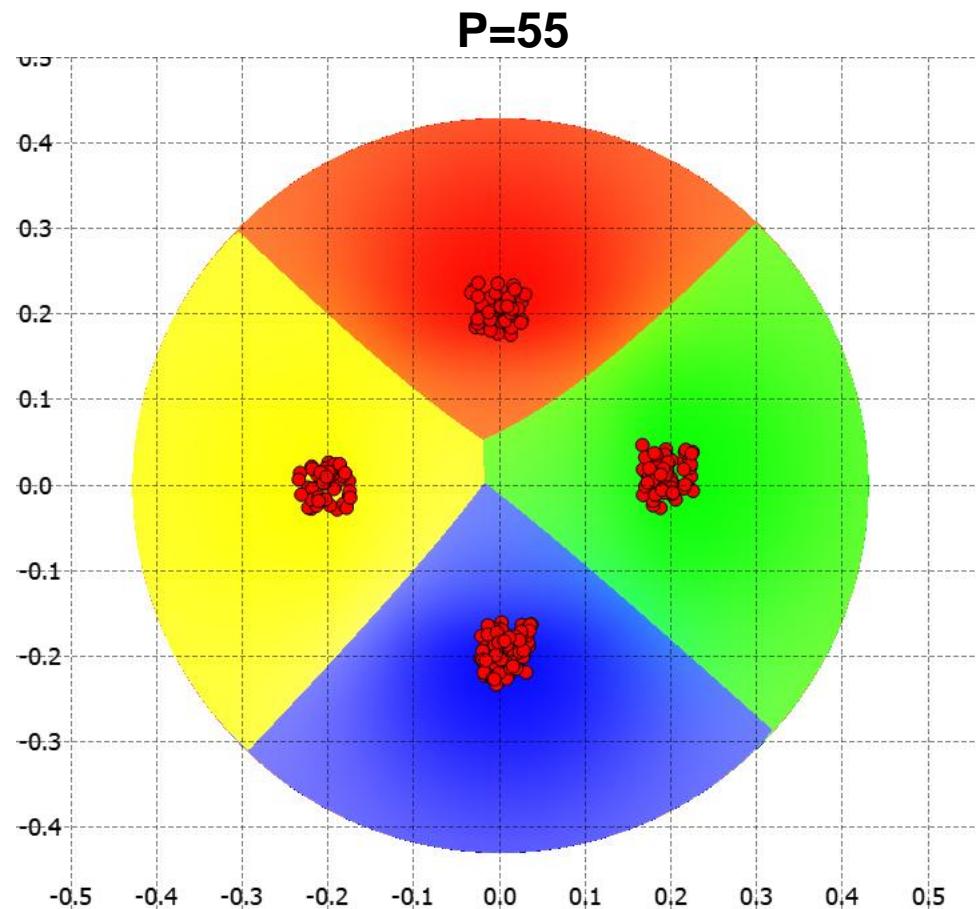
Quadran partitioning



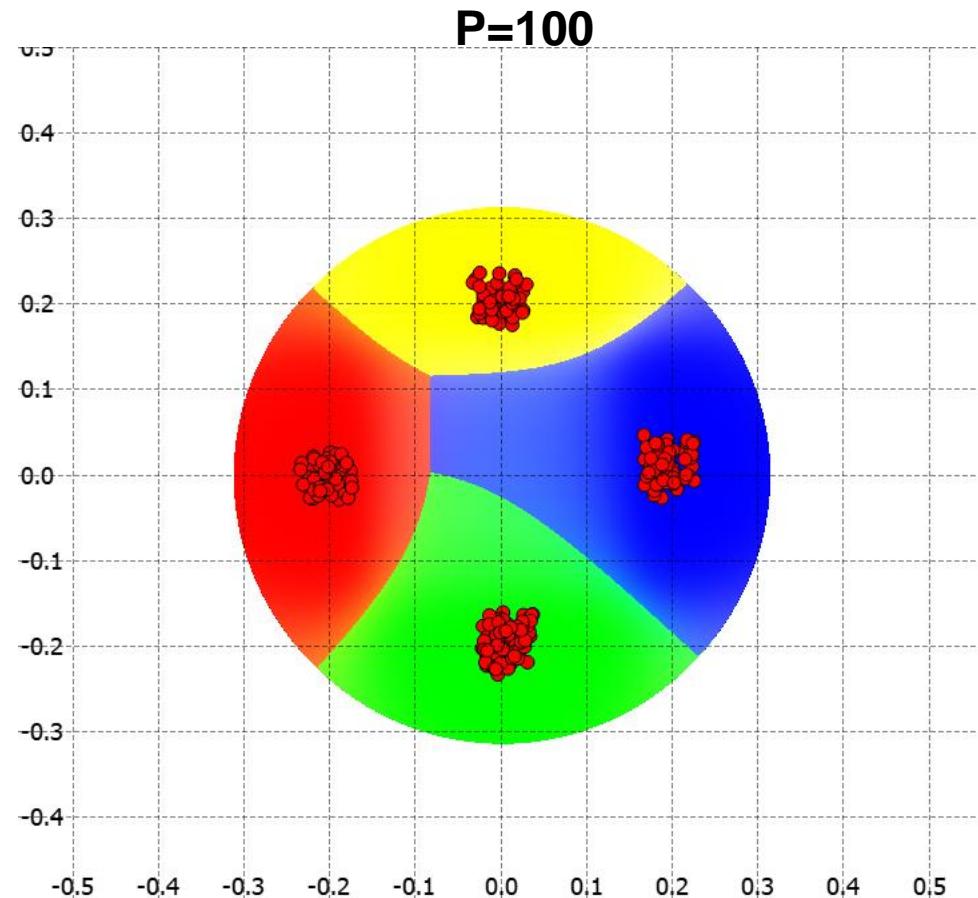
Quadran partitioning



Quadran partitioning

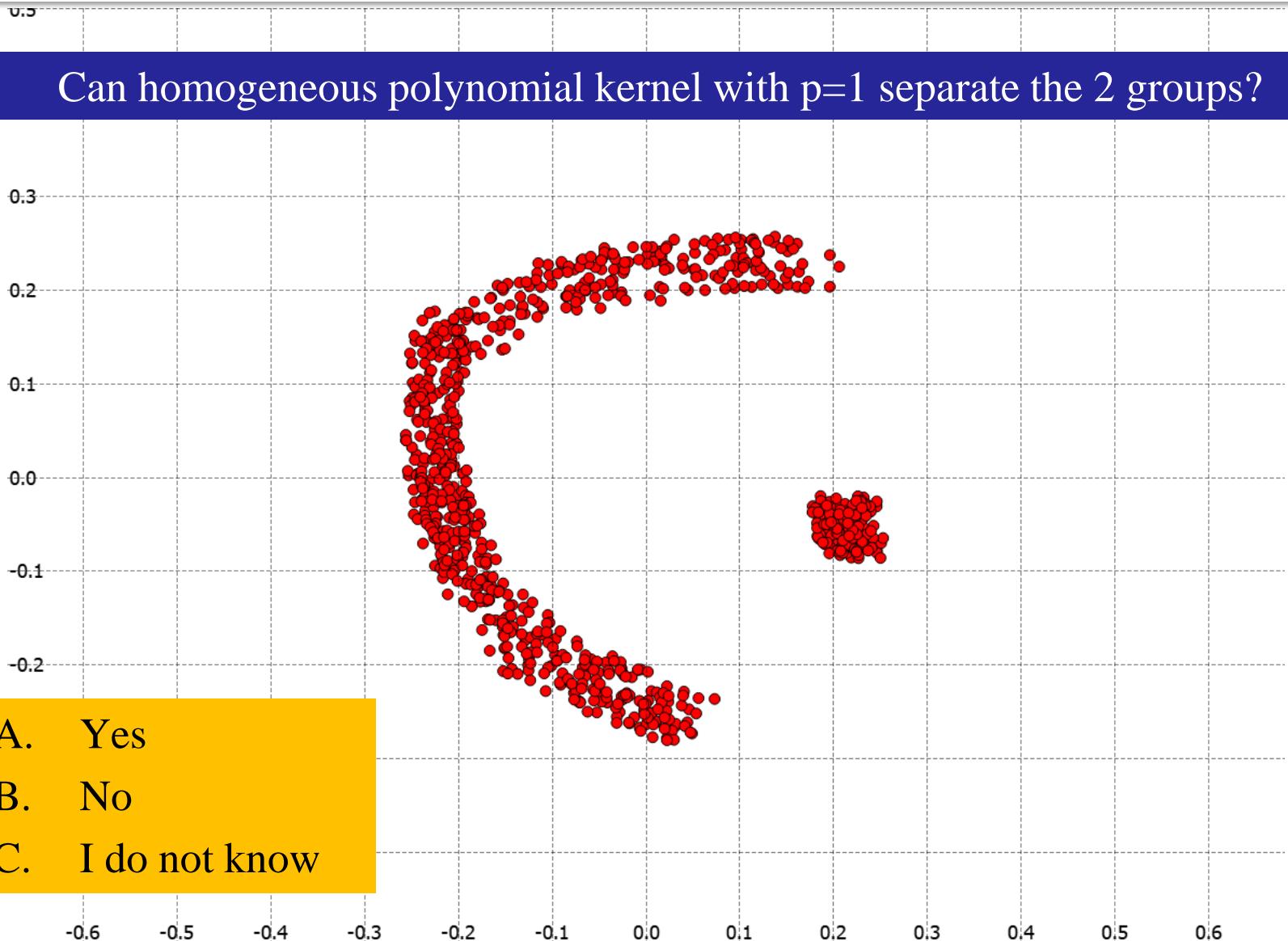


Quadran partitioning



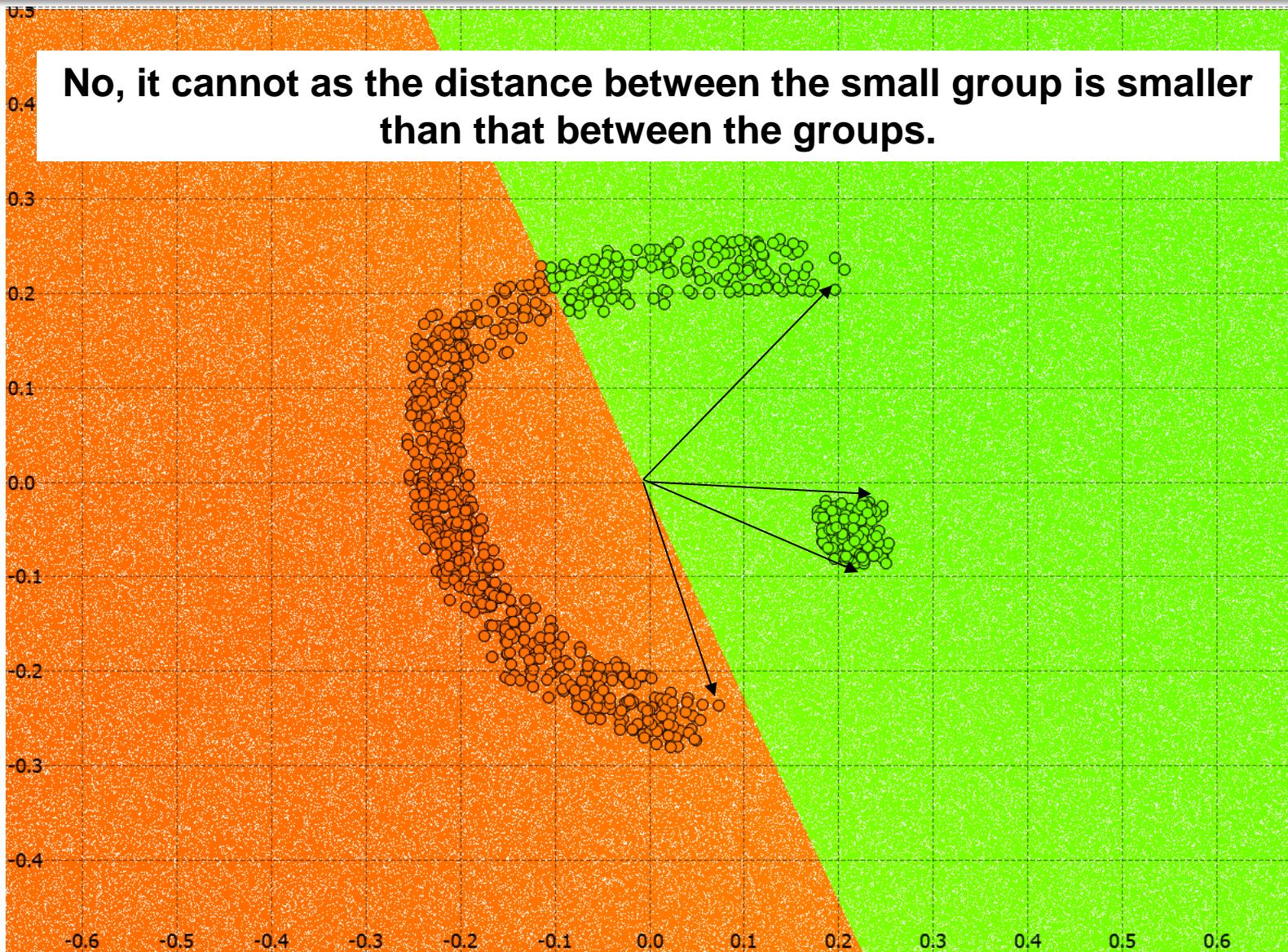
Type of partitioning

Can homogeneous polynomial kernel with $p=1$ separate the 2 groups?



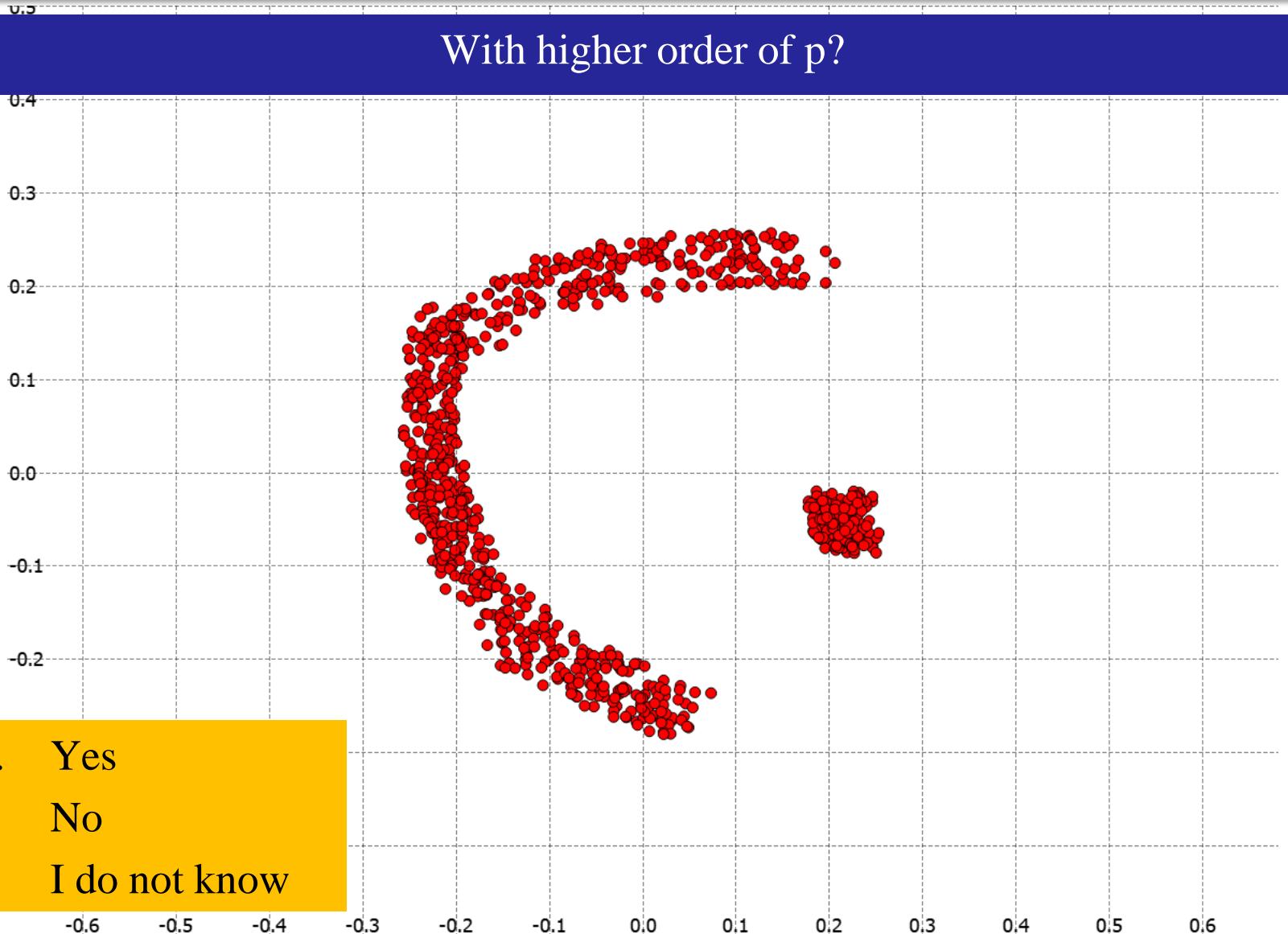
- A. Yes
- B. No
- C. I do not know

Type of partitioning



Type of partitioning

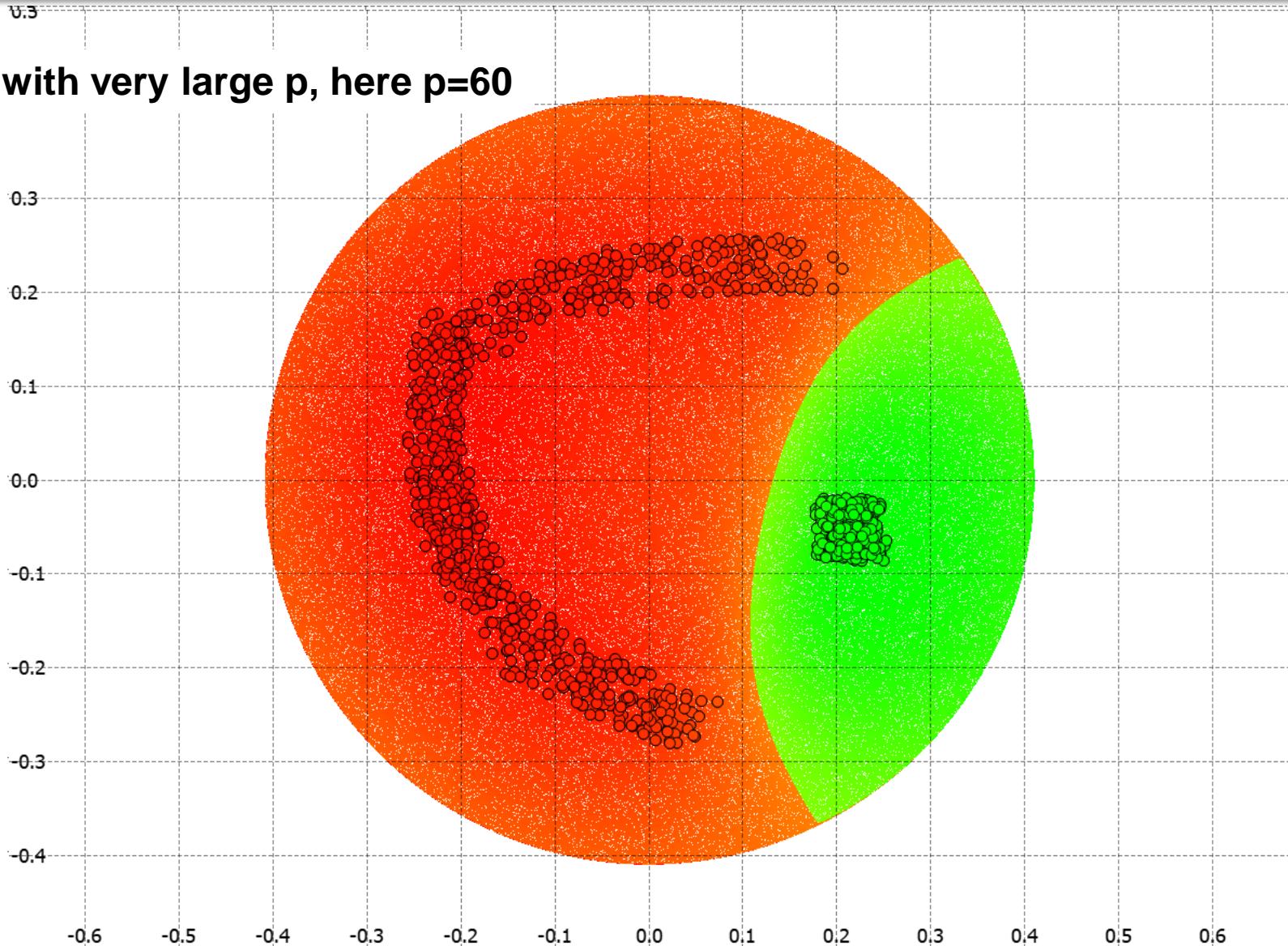
With higher order of p ?



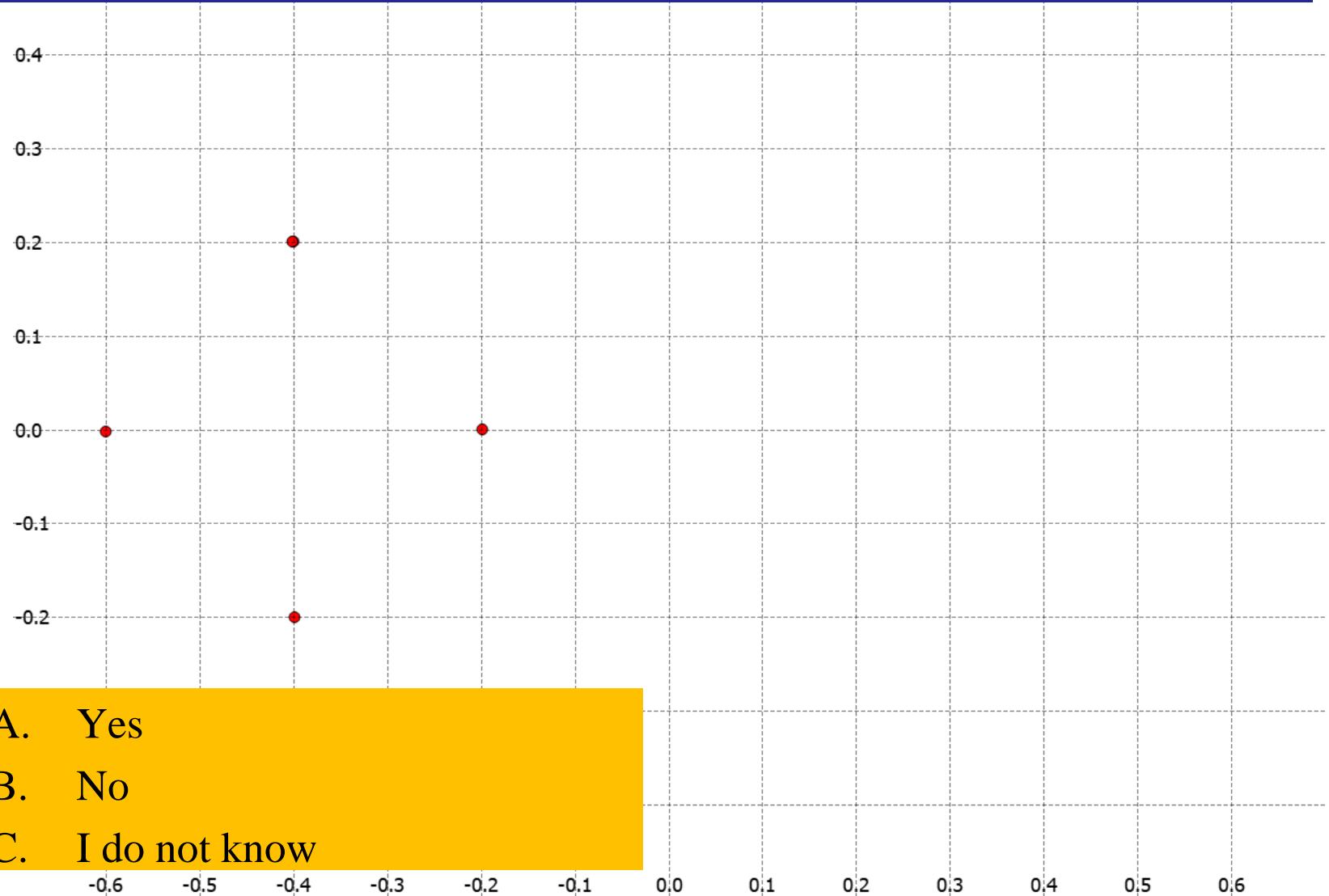
- A. Yes
- B. No
- C. I do not know

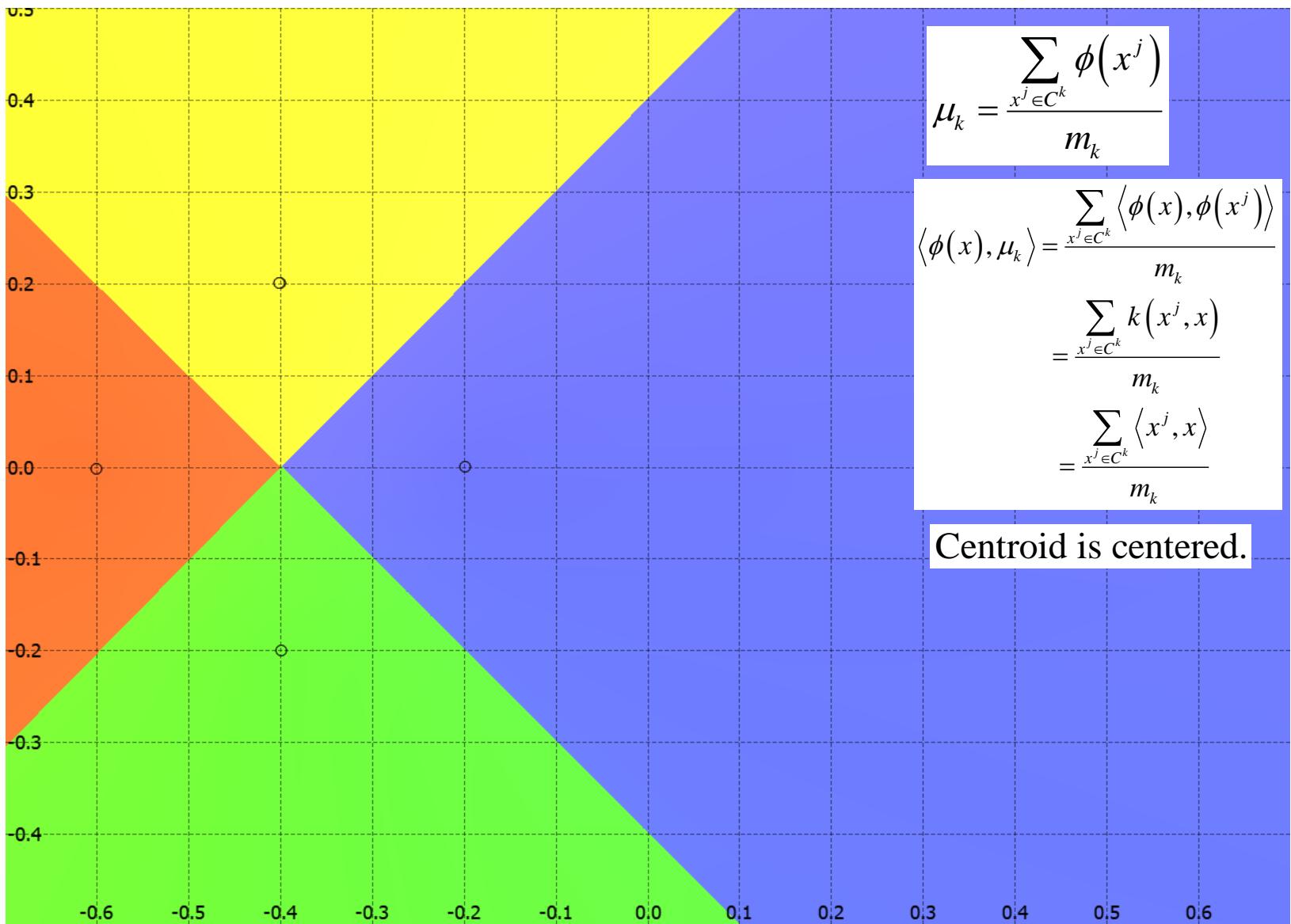
Type of partitioning

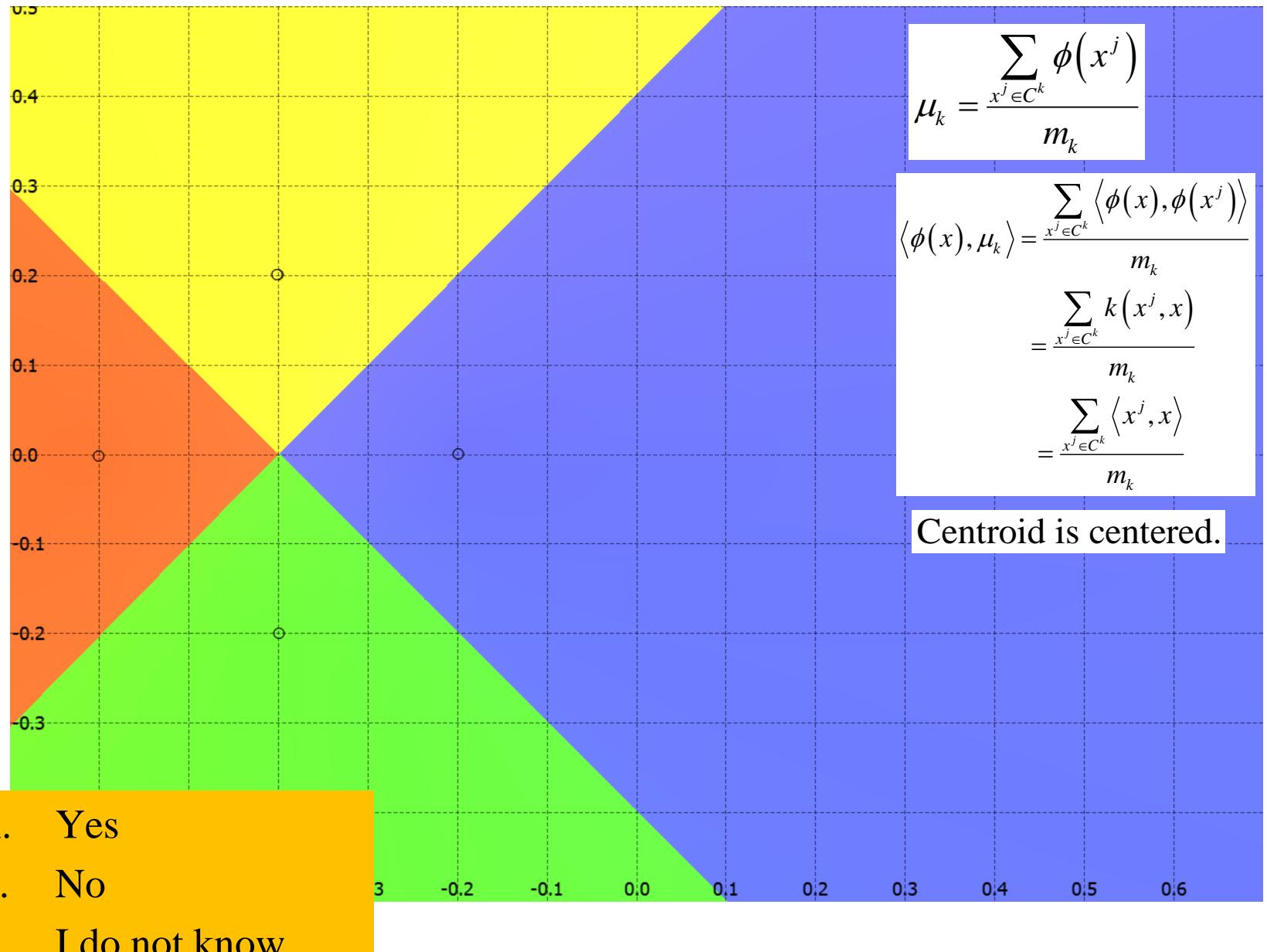
Yes with very large p , here $p=60$

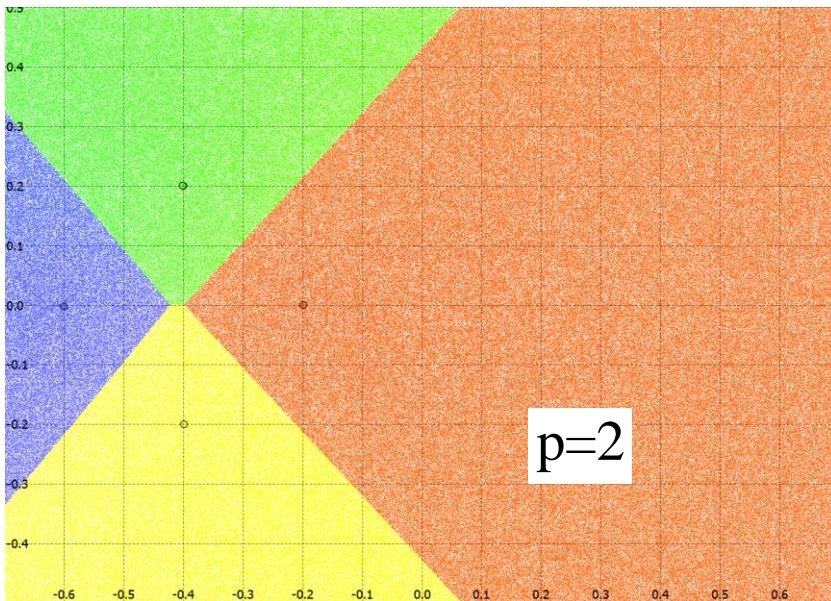


Consider this group of points not centered, if you use $K=4$, homogeneous polynomial kernel $p=1$, will you get correct partitioning?



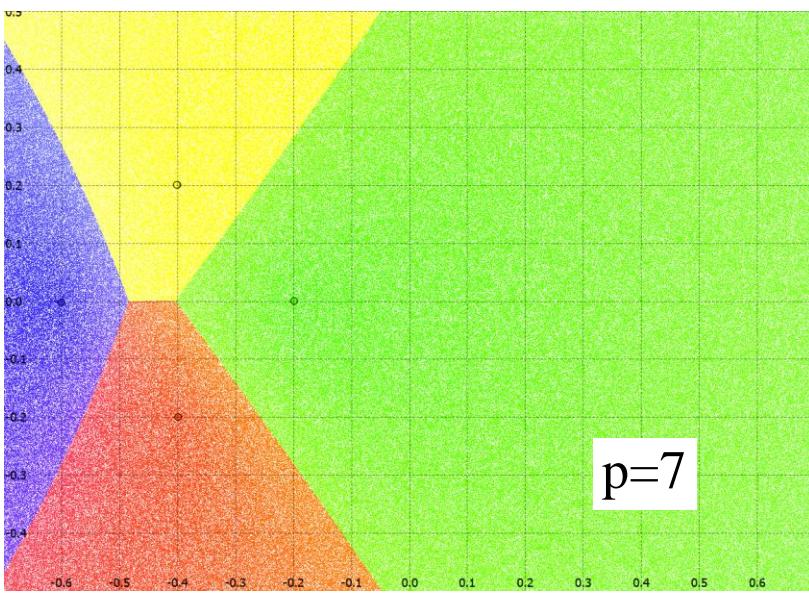
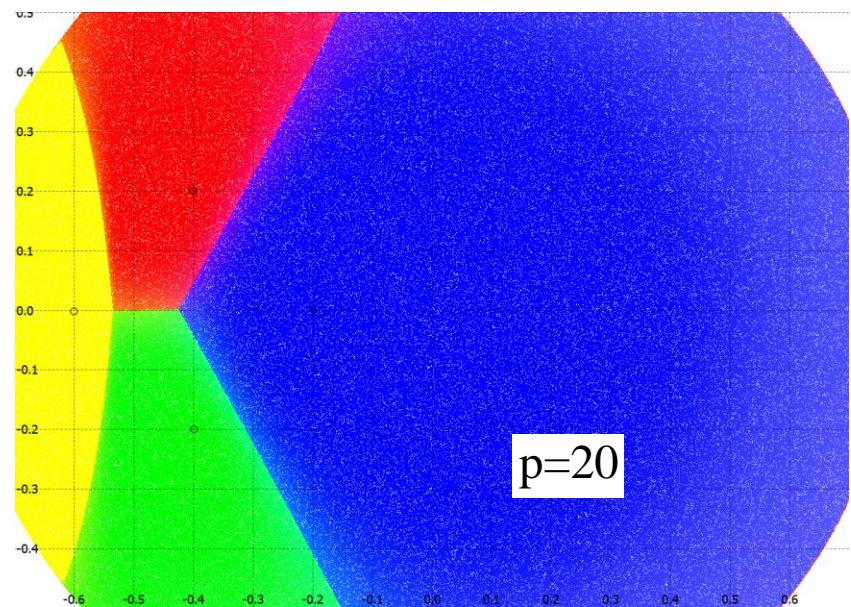


Would the result change with $p > 1$?



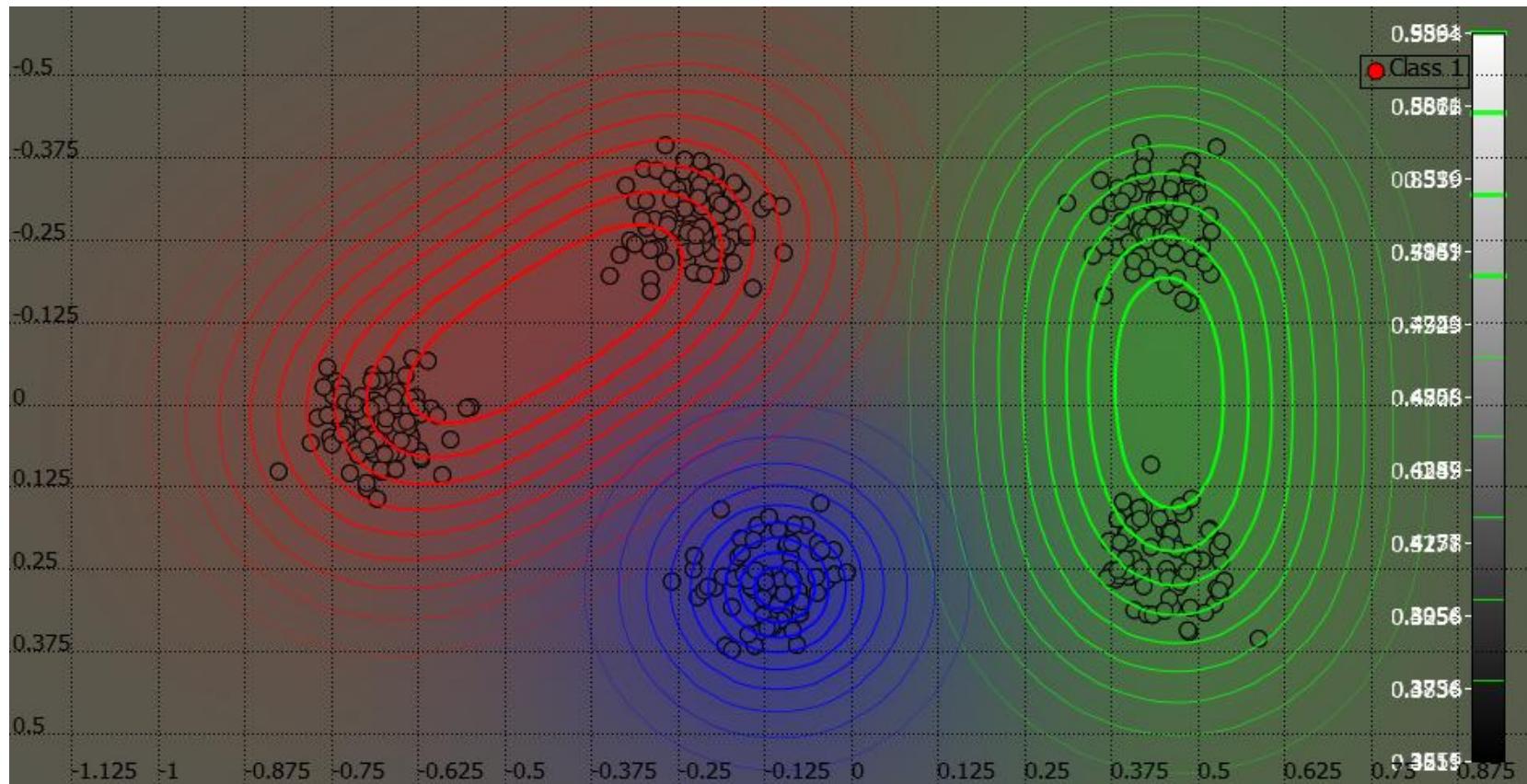
$$\begin{aligned} \langle \phi(x), \mu_k \rangle &= \frac{\sum_{x^j \in C^k} \langle x^j, x \rangle^P}{m_k} \\ &= \frac{\sum_{x^j \in C^k} \|x^j\|^P \|x\|^P \cos(\theta)^P}{m_k} \end{aligned}$$

The higher p ,
the more curvy
the boundaries.



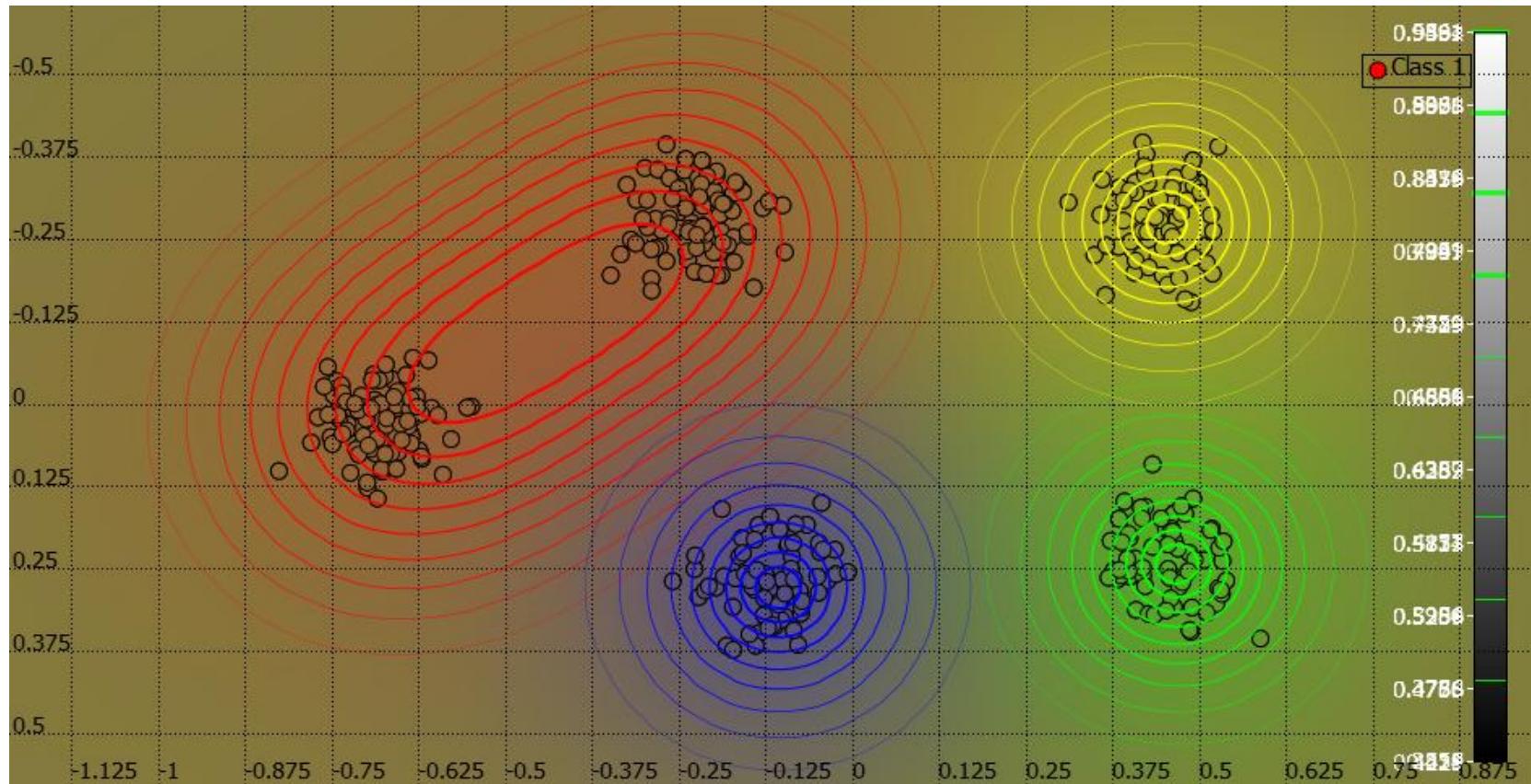
Kernel K-means: Limitations

Choice of number of Clusters in Kernel K-means is important



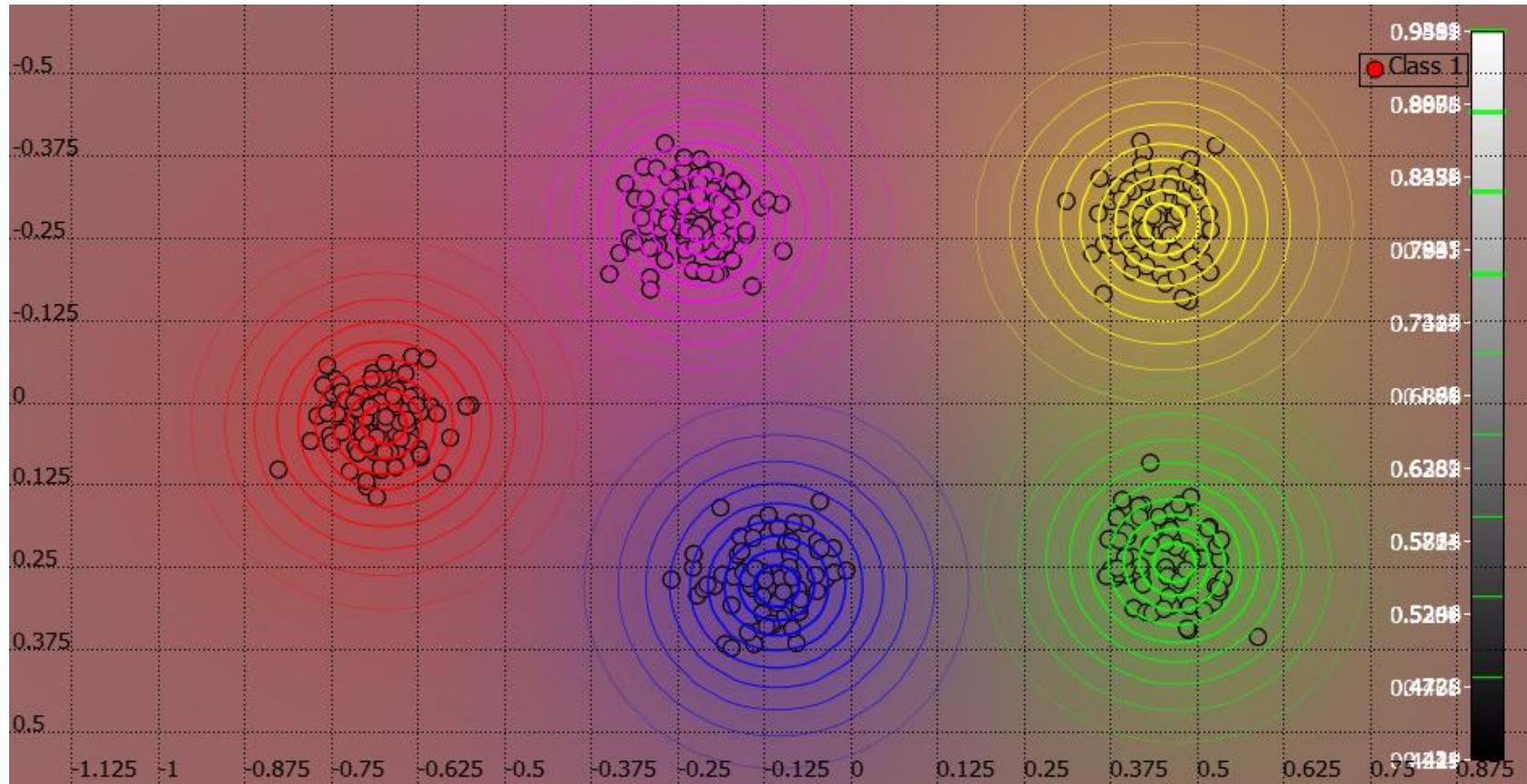
Kernel K-means: Limitations

Choice of number of Clusters in Kernel K-means is important

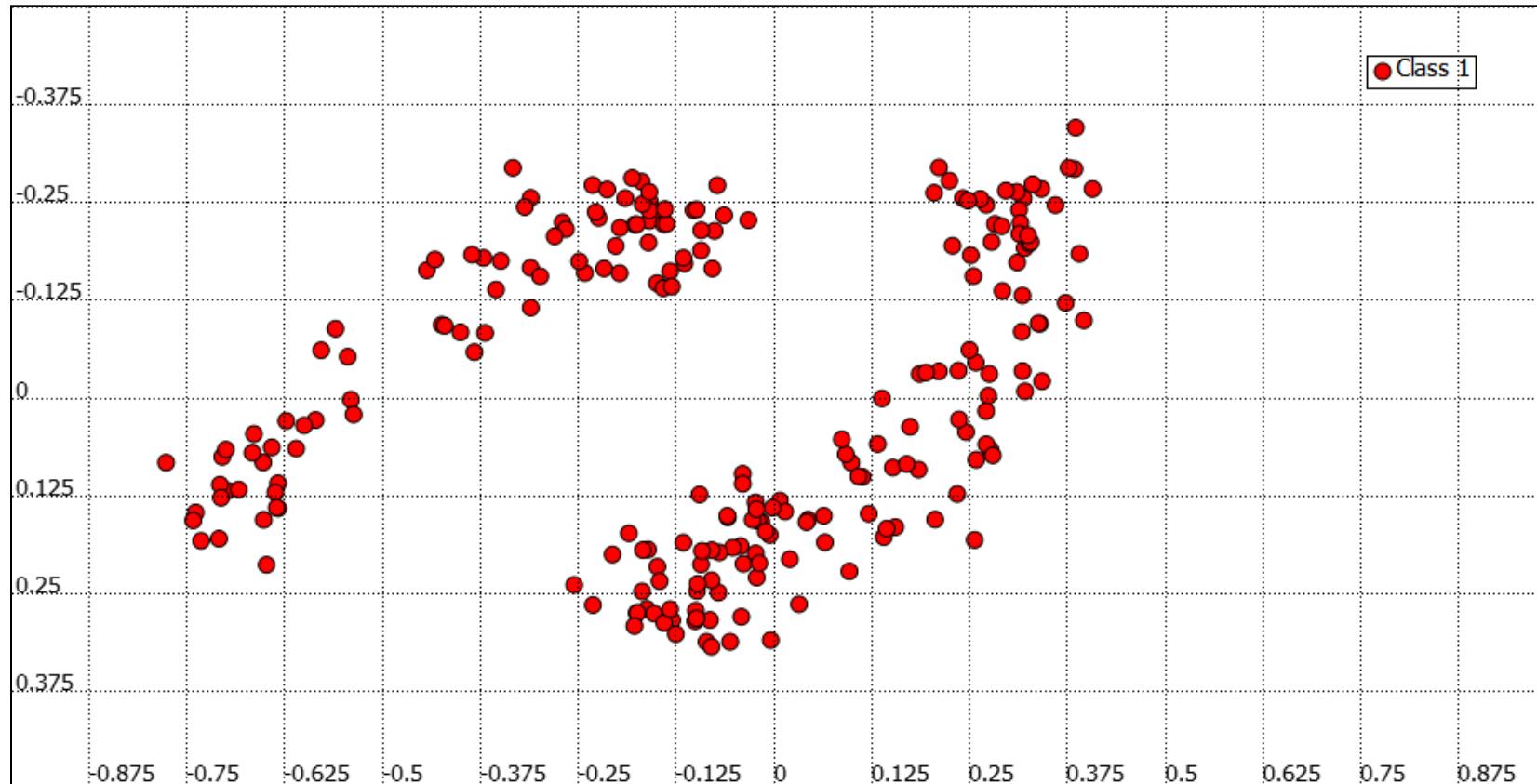


Kernel K-means: Limitations

Choice of number of Clusters in Kernel K-means is important

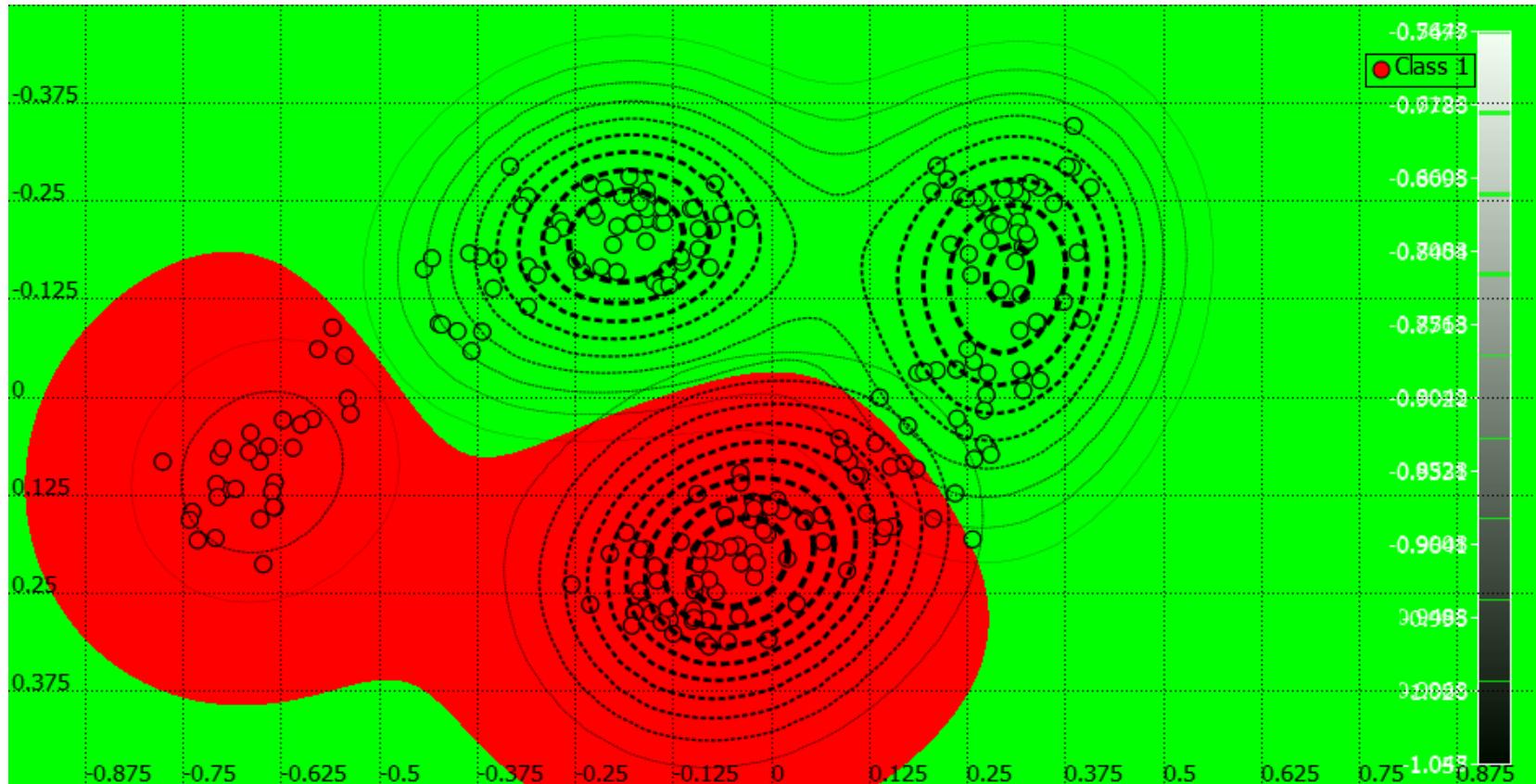


Limitations of kernel K-means



Raw Data

Limitations of kernel K-means



kernel K-means with $K=2$, RBF kernel