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Kernel for Clustering
kernel K-Means

Interactive lecture and exercises
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Kernel K-means: Algorithm

Kernel K-means algorithm is also an iterative procedure:

1. Initialization: pick K clusters (random assignment of points to a cluster, or use
K-means at initialization)

2. Assignment Step: Assign each data point to its “closest” centroid

(E-step).
2% k(xx)) > k(xj,x')\
argmind(x’ck):min k(X,X)— xJeck _|_XJ,X|eCk :
k k mk (mk)

\

3. Update Step: Update the list of points belonging to each centroid
(M-step)

4. Go back to step 2 and repeat the process until the clusters are stable.
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Interpreting the objective function

What is the influence of this term on the clustering (when using the RBF kernel)?

. : \
( 2y k(x,x’) > k(x‘,x')
. k - xleck xJ x'eck
argmlnd(x,C ):mkln k(% x)- + 5
k m, (mk)
\
A. It gives more weight to points close to
the cluster.
B. It gives less weight to points close to
the Cluste-r. K (x, x) depends only on the query datapoint x
C. Ithas no influence. It is the same for all clusters and hence has no
D. |do not know.

influence on cluster allocation.
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Interpreting the objective function

What is the influence of this term on the clustering (when using the RBF kernel)?

( 9 Z k(x,xj) | k(xj’xl)\
arg mind(x,Ck):min K (X, x)—=<C THLLES
k K mk (mk)
\
A. The closer the point x is to the cluster, the =
larger is this term. O<k(xx)=e o <1

o

The denser the cluster, the larger.

C. The more spread out the cluster is, the
larger.

D. | do not know.

The closer the point to the
center of the cluster,
the larger the kernel.

GTGTGBGEEEEEEEESSSSSSEEEHSEEESFES.
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Interpreting the objective function

What is the influence of this term on the clustering (when using the RBF kernel)?

[ ZZ k(x,xj) Z k(xj’xl*
. - i i ool k
arg mlnd(x,Ck):mln K (X, X)——<C s
K k m, (mk)
\
A. The closer the point x is to the cluster, the > k(xx')
larger is this term. P
B. The denser the cluster, the larger. () _
_ The closer the points
C. The more spread out the cluster is, the

are to one another in
the same cluster, the
larger the sum.

larger.
D. |do not know.
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Kernel K-means: interpreting the solution

Density versus number of points

( 22 k(x,xj) Z k(Xj,X')\
arg mlnd(X,Ck):mm k(X,X)— xJ eCX +XJ,X|€Ck :

K K mk (mk)
) Y

C' has same number of points than C*, but is denser.




ADVANCED MACHINE LEARNING

Density versus number of points

( 2y k(x,xj) Z k(xj’xl)\
argmind (x,C*) =min| k(x,x) e ,xj,xlec(k )2
k k .

Cutoff like classical K-means.
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Density versus number of points

( 22 k(x,xj) Z k(Xj,X'*
arg mind(X,Ck)zmin k(x’x)_ x) eCX +XJ’X|€Ck 2
K K m, (mk)

\
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A. Yes
B. No | N
C. |do not know ZZK(X’XJ) Z k(XJ’X)
argmind(x,Ck)zmin K (X, X)——*<C pee?
k k mk (mk)
J

e

‘b
o T

There is no difference if the additional "datapoiﬁts are superimpoﬂs'ed to the breVious group.
The additional number is taken into account in the normalization.
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A. Yes
B. No

C. 1do not know
arg min d (x,Ck)z min| k(x,x) -

k

points but of the centroid of C2 to shift to the right.
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Kernel K-means: interpreting the solution

Density versus number of points

[ 22 k(X,Xj) Z k(xj’xl)\\
argmind (x,C*)=min| k(x,x)——=< TREL S

k k m, (mk )
\ J
Normalization factors cancel effect of # points

and give a measure of average density / distance
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Kernel K-means: interpreting the solution

B: Affected by the

A: Affected by the relative angle across
- G position of the points the points.
k(x"x')z((x') X’“’) ¢ €R peN, | from the origin (norm).

Norm - Positive value

] ] - i ek
arg mlnd(x,Ck):mkm xlect 4 X ec
k

A datapoint will be assigned to the closest cluster in the closest partition.
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Kernel K-means: interpreting the solution

Equidistant for p=2, 4, etc

A: Affected by the
position of the points
from the origin (norm).

\ 4

Homogeneous Polynomial
p

k(x‘,x")=((xi)T xj) , peN,

argmind (x,C*) = min
k
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Kernel K-means: interpreting the solution

Homogeneous Polynomial
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K=2, p=2
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Kernel K-means

2, p=2

K=
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Kernel K-means: interpreting the solution

Norm larger ------------ |

The second term
counterbalances
the first term
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Kernel K-means: interpreting the solution

CZ

argmind
k

B: Affected by the
relative angle across
the points.

(x,Ck):mkin

v

If the centroid of the cluster
does not change, the term
remains comparable.
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B: Affected by the
relative angle across
the points.

CZ

argmind (x,C*) = min
k

The spread of the cluster affects both
angle and distance between points
within same cluster. Imbalance in point
distribution may be exacerbated.
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within same cluster. Imbalance in point

distribution may be exacerbated.

% The spread of the cluster affects both
angle and distance between points
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Partitioning with K=4 and homogeneous polynomial with p=1.
e
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Will the partitioning be correct in this case t00?
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A. Yes
B. No
C. 1do not know

Partitioning with K=4 and homogeneous polynomial with p=1.
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‘COLE POLYTECHNIQUE

Does the boundary depend on the power of the polynomial p?

A. Yes
B. No
C. 1do not know
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Quadran partitioning

pP=2

]
L*.5

(o]




ADVANCED MACHINE LEARNING

Quadran partitioning

P=3
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Type of partitioning

Can homogeneous polynomial kernel with p=1 separate the 2 groups?

o
[#¥]

o
i

o
o

o

oW ]
v.a

A. Yes
B. No
C. 1do not know

-0.6 0.5 04  -03  -02 0.1 0.0 0.1 0;2 0.3 0.4 0.5 0i6
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No, it cannot as the distance between the small group is smaller
than that between the groups.
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Type of partltlonlng

Wlth hlgher order of p?

A. Yes
B. No
C. 1donot know

-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 0i1 0:2 0.3 0.4 0.5 0i6
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uU.o

Type of partitioning

Yes with very large p, here p=60
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Consider this group of points not centered, if you use K=4, homogeneous
polynomial kernel p=1, will you get correct partitioning?

o]

o]
i
L4

A. Yes
B. No
C. Ildonotknow | |
-0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0.0 01 0:2 0.3 0.4 0.5 0:6
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Centroid is centered.

40
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oud th reslt cane with p>1?

Centroid is centered.

n=
B

A. Yes |
B. No -
C. | do not know
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T

0:4-

Z x), X
¢(X)’,Uk :x‘eCk

5 [ cos(o)
_ X'e

The higher p,
the more curvy
the boundaries.
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Kernel K-means: Limitations

Choice of number of Clusters in Kernel K-means is important




ADVANCED MACHINE LEARNING ai-il
Kernel K-means: Limitations

Choice of number of Clusters in Kernel K-means is important
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Kernel K-means: Limitations

Choice of number of Clusters in Kernel K-means is important
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Limitations of kernel K-means

Raw Data

40
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Limitations of kernel K-means

kernel K-means with K=2, RBF kernel
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